References
- M.C. Nataraja, M.A.Jayaram, C.N.Ravikumar, "Prediction of Early Strength of Concrete: A Fuzzy Inference System Model," J. International Journal of Physical Sciences. vol. 1, pp. 47-56, 2006.
- W. Pedrycz, "An identification algorithm in fuzzy relational system," J. Fuzzy Sets Syst. vol. 13, pp. 153-167, 1984. https://doi.org/10.1016/0165-0114(84)90015-0
- R. M. Tong, "The evaluation of fuzzy models derived from experimental data," J. Fuzzy Sets Syst. vol. 13, pp 1-12, 1980.
- C. W. Xu., Y. Zailu, "Fuzzy model identification self-learning for dynamic system," J. IEEE Trans. on System, Man, and Cybernetics. vol. 17 no.4, pp. 683-689, 1987. https://doi.org/10.1109/TSMC.1987.289361
- M. Sugeno., T. Yasukawa, "Linguistic modeling based on numerical data," in proc. of IFSA'91 Brussels, Computer, Management & System Science. pp. 264-267. 1991.
- S. K. Oh., W. Pedrycz, "Identification of Fuzzy Systems by means of an Auto-Tuning Algorithm and Its Application to No.nlinear Systems," J. Fuzzy Sets and Syst. vol. 115 no.2, pp 205-230, 2000. https://doi.org/10.1016/S0165-0114(98)00174-2
- F. Liu, P. Lu, R. Pei, "A new fuzzy modeling and identification based on fast-cluster and genetic algorithm," J. Intell. Contr. Automat. vol. 1, pp. 290-293, 2004.
- W.Y Chung, W. Pedrycz, E.T Kim, "A new two-phase approach to fuzzy modeling for no.nlinear function approximation," J. IEICE Trans. Info. Syst. vol. 9, pp. 2473-2483, 2006.
- Z.-L. Gaing, "A particle swarm optimization approach for optimum design of PID controller in AVR system," J. IEEE Trans. Energy Conversion. vol. 19, pp. 384-391, 2004. https://doi.org/10.1109/TEC.2003.821821
- B. J. Park., W. Pedrycz., S. K. Oh, "Identification of Fuzzy Models with the Aid of Evolutionary Data Granulation," IEE Proc.-Control Theory and Applications, Vol. 148, pp. 406-418, 2001. https://doi.org/10.1049/ip-cta:20010677
- J.N. Choi, S.K. Oh, and W. Pedrycz, "Structural and parametric design of fuzzy inference systems using hierarchical fair competition-based parallel genetic algorithms and information granulation," International Journal of Approximate Reasoning, vol. 49, pp. 631-648, 2008. https://doi.org/10.1016/j.ijar.2008.06.006
- S. Horikawa, T. Furuhashi and Y. Uchigawa, "On fuzzy modeling using fuzzy neural networks with the back propagation algorithm," IEEE Trans. Neural Networks, vol. 3, no. 5, pp. 801-806, 1992. https://doi.org/10.1109/72.159069
- G. Kang, M. Sugeno., "Fuzzy modeling," Trans. SICE, vol. 23, no. 6, pp. 106-108, 1987.
- T. Kondo, "Revised GMDH algorithm estimating degree of the complete polyno.mial," Trans. Soc. Instrum. Control Eng., vol. 22, no. 9, pp. 928-934, 1986. https://doi.org/10.9746/sicetr1965.22.928
- S.K. Oh, W. Pedrycz, H.S. Park, "Rule-based multi-FNN identification with the aid of evolutionary fuzzy granulation," Knowledge-Based Systems, vol. 17, pp. 1-13, 2004. https://doi.org/10.1016/S0950-7051(03)00047-9
- S.K. Oh, W. Pedrycz, H.S. Prak, "Hybrid identification in fuzzy-neural networks," Fuzzy Set System., vol. 138, no. 2, pp. 399-426, 2003. https://doi.org/10.1016/S0165-0114(02)00441-4
- H.S. Park, S.K. Oh, "Fuzzy relation-based fuzzy neural-networks using a hybrid identification algorithm," Int. J. Cont., Autom. Syst., vol. 1, no. 2, pp. 289-300, 2003.
- H.S. Park, S.K. Oh, "Multi-FNN identification based on HCM clustering and evolutionary fuzzy granulation," Int. J. Cont., Autom. Syst., vol. 1, No. 2, pp. 194-202, 2003.
- S.K. Oh, W. Pedrycz, H.S. Prak, "Implicit rule-based fuzzy-neural networks using the identification algorithm of hybrid scheme based on information granulation," Adv. Eng. Inform., vol. 16, no. 4, pp. 247-263, 2002. https://doi.org/10.1016/S1474-0346(03)00016-8
- S.K. Oh, W. Pedrycz, "A new approach to self-organizing multi-layer fuzzy polyno.mial neural networks based on genetic optimization," Adv. Eng. Inform., vol. 18, pp. 29-39, 2004. https://doi.org/10.1016/j.aei.2004.05.001
- J.N. Choi, S.K. Oh, W. Pedrycz, "Identification of fuzzy relation models using hierarchical fair competition-based parallel genetic algorithms and information granulation," Applied Mathematical Modelling, vol. 33, pp. 2791-2807, 2009. https://doi.org/10.1016/j.apm.2008.08.022
- P.R. Krishnaiah., L.N. Kanal (Eds.), "Classification, Pattern Recognition, and Reduction of Dimensionality. Handbook of Statistics," vol. 2, No.rth-Holland, Amsterdam. 1982.
- L. X. Wang., J. M. Mendel, "Generating fuzzy rules from numerical data with applications," J. IEEE Trans. on System, Man, and Cybernetics. vol. 22, pp. 1414-1427, 1992. https://doi.org/10.1109/21.199466
- J.S.R Jang, "ANFIS: adaptive-network-based fuzzy inference system" J. IEEE Trans. System Man Cybernet., vol. 23, no. 3, pp. 665-685, 1993. https://doi.org/10.1109/21.256541
- L.P. Maguire, B. Roche, T.M. McGinnity, L.J. McDaid, "Predicting a chaotic time series using a fuzzy neural network," J. Inform. Sci., vol. 112, pp. 125-136, 1998. https://doi.org/10.1016/S0020-0255(98)10026-9
- J.C. Duan., F.-L. Chung, "Multilevel fuzzy relational systems: structure and identification," J. Soft Comput., vol. 6, pp. 71-86, 2002. https://doi.org/10.1007/s005000100144
- Y. Chen., B. Yang., A. Abraham, "Automatic design of hierarchical Takagi-Sugeno. type fuzzy systems using evolutionary algorithms," J. IEEE Trans. Fuzzy Systems., vol. 15, no. 3, pp. 385-397, 2007. https://doi.org/10.1109/TFUZZ.2006.882472
Cited by
- 공간탐색 진화알고리즘을 이용한 Interval Type-2 pRBF 뉴럴 네트워크의 구조적 해석 vol.21, pp.1, 2010, https://doi.org/10.5391/jkiis.2011.21.1.12
- Identification of Fuzzy Inference Systems Using a Multi-objective Space Search Algorithm and Information Granulation vol.6, pp.6, 2010, https://doi.org/10.5370/jeet.2011.6.6.853
- Multiobjective Space Search Optimization and Information Granulation in the Design of Fuzzy Radial Basis Function Neural Networks vol.7, pp.4, 2010, https://doi.org/10.5370/jeet.2012.7.4.636
- Design of Fuzzy Models with the Aid of an Improved Differential Evolution vol.22, pp.4, 2010, https://doi.org/10.5391/jkiis.2012.22.4.399
- Data-Driven Interval Type-2 Neural Fuzzy System With High Learning Accuracy and Improved Model Interpretability vol.43, pp.6, 2010, https://doi.org/10.1109/tsmcb.2012.2230253
- Identification of Fuzzy Inference Systems by Means of a Multiobjective Opposition-Based Space Search Algorithm vol.2013, pp.None, 2010, https://doi.org/10.1155/2013/725017
- Design of Polynomial Fuzzy Radial Basis Function Neural Networks Based on Nonsymmetric Fuzzy Clustering and Parallel Optimization vol.2013, pp.None, 2013, https://doi.org/10.1155/2013/745314