DOI QR코드

DOI QR Code

Establishment of a Radiation-Induced Fibrosis Model in BALB/c Mice

BALB/c 마우스를 이용한 방사선섬유증 모델 확립

  • Ryu, Seung-Hee (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Lee, Sang-Wook (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Moon, Soo-Young (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Oh, Jeong-Yoon (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Yang, Youn-Joo (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Park, Jin-Hong (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine)
  • 류승희 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 이상욱 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 문수영 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 오정윤 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 양연주 (울산대학교 의과대학 서울아산병원 방사선종양학과) ;
  • 박진홍 (울산대학교 의과대학 서울아산병원 방사선종양학과)
  • Received : 2010.02.10
  • Accepted : 2010.03.09
  • Published : 2010.08.31

Abstract

Purpose: Although radiation-induced fibrosis is one of the common sequelae occurring after irradiation of skin and soft tissues, the treatment methods are not well standardized. This study aimed to establish the skin fibrosis mouse model by fractionated radiation for the further mechanism studies or testing the efficacy of therapeutic candidates. Materials and Methods: The right hind limbs of BALB/c mice received two fractions of 20 Gy using a therapeutic linear accelerator. Early skin damages were scored and tissue fibrosis was assessed by the measurement of a leg extension. Morphological changes were assessed by H&E staining and by Masson's Trichrome staining. TGF-${\beta}1$ expression from soft tissues was also detected by immunohistochemistry and PCR. Results: Two fractions of 20 Gy irradiation were demonstrated as being enough to induce early skin damage effects such as erythema, mild skin dryness, dry and wet desquamation within several weeks of radiation. After 13 weeks of irradiation, the average radiation-induced leg contraction was $11.1{\pm}6.2mm$. Morphologic changes in irradiated skin biopsies exhibited disorganized collagen and extracellular matrix fibers, as well as the accumulation of myofibroblasts compared to the non-irradiated skin. Moreover, TGF-${\beta}1$ expression in tissue was increased by radiation. Conclusion: These results show that two fractions of 20 Gy irradiation can induce skin fibrosis in BALB/c mice accompanied by other common characteristics of skin damages. This animal model can be a useful tool for studying skin fibrosis induced by radiation.

목 적: 항암요법에 의한 부작용 중 방사선섬유증(radiation fibrosis)은 방사선치료 후 빈번하게 일어나지만 발생빈도 및 심각성에 비해 치료법이 제한적이다. 본 연구에서는 방사선섬유증의 기전 연구 및 치료제 개발을 위해 방사선섬유증 동물모델계를 확립하고자 하였다. 대상 및 방법: 마우스의 대퇴부에 20 Gy의 방사선을 1주 간격으로 2회 조사한 후 날짜 별로 육안적 평가와 haematoxylin & eosin (H&E) 및 Masson’s Trichrome 염색을 통한 조직학적 변화를 평가하였다. 연부조직 수축도를 평가하기 위하여 특별히 고안된 틀을 이용하여 양쪽 하지의 길이 차이를 측정하였고, transforming growth factor (TGF)-${\beta}$의 발현 정도를 면역조직염색 및 중합효소연쇄반응(polymerase chain reaction)을 통해 측정하였다. 결 과: 본 연구에서 20 Gy씩 2회의 방사선조사를 시행하고 14, 28, 42, 97일 후 양측 하지의 수축도를 비교한 결과 42일 이후에 유의한 길이 차이가 나타났고 조직검사 결과 방사선이 조사된 피부 및 연부조직에서 아교질(collagen)과 세포외바탕질(extracellular matrix) 섬유가 불규칙한 배열을 나타내었으며 근육섬유모세포(myofibroblast)의 증가가 관찰되었다. TGF-${\beta}$ 발현 정도를 면역염색으로 조사한 결과 시간이 지남에 따라 증가하였고, 중합효소연쇄반응상 mRNA 발현량도 대조군에 비해 유의하게 증가하였다. 결 론: BALB/c 마우스의 대퇴부에 20 Gy의 방사선을 2회 조사하였을 때 방사선섬유증과 관련된 주요 인자인 TGF-${\beta}$의 발현량이 증가하였을 뿐만 아니라 외관적으로도 뚜렷한 방사선섬유증이 관찰되어 앞으로의 연구를 위한 효과적인 동물모델계로 사료된다.

Keywords

References

  1. Dormand EL, Banwell PE, Goodacre TE. Radiotherapy and wound healing. Int Wound J 2005;2:112-127 https://doi.org/10.1111/j.1742-4801.2005.00079.x
  2. Martin M, Lefaix J, Delanian S. TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 2000;47:277-290 https://doi.org/10.1016/S0360-3016(00)00435-1
  3. Xavier S, Piek E, Fujii M, et al. Amelioration of radiation-induced fibrosis: inhibition of transforming growth factor-beta signaling by halofuginone. J Biol Chem 2004;279:15167-15176 https://doi.org/10.1074/jbc.M309798200
  4. Sivan V, Vozenin-Brotons MC, Tricaud Y, et al. Altered proliferation and differentiation of human epidermis in cases of skin fibrosis after radiotherapy. Int J Radiat Oncol Biol Phys 2002;53:385-393 https://doi.org/10.1016/S0360-3016(01)02732-8
  5. Vozenin-Brotons MC, Gault N, Sivan V, et al. Histopathological and cellular studies of a case of cutaneous radiation syndrome after accidental chronic exposure to a cesium source. Radiat Res 1999;152:332-337 https://doi.org/10.2307/3580334
  6. Hopewell JW. The skin: its structure and response to ionizing radiation. Int J Radiat Biol 1990;57:751-773 https://doi.org/10.1080/09553009014550911
  7. Trojanowska M, LeRoy EC, Eckes B, Krieg T. Pathogenesis of fibrosis: type 1 collagen and the skin. J Mol Med 1998;76:266-274 https://doi.org/10.1007/s001090050216
  8. Delanian S, Lefaix JL. Current management for late normal tissue injury: radiation-induced fibrosis and necrosis. Semin Radiat Oncol 2007;17:99-107 https://doi.org/10.1016/j.semradonc.2006.11.006
  9. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008;214:199-210 https://doi.org/10.1002/path.2277
  10. Andarawewa KL, Paupert J, Pal A, Barcellos-Hoff MH. New rationales for using TGFbeta inhibitors in radiotherapy. Int J Radiat Biol 2007;83:803-811 https://doi.org/10.1080/09553000701711063
  11. Jang SS, Choi IB. The change of transforming growth factor beta1 (TGF-beta1) expression by melatonin in irradiated lung. J Korean Soc Ther Radiol Oncol 2005;23:161-168
  12. Stone HB. Leg contracture in mice: an assay of normal tissue response. Int J Radiat Oncol Biol Phys 1984;10:1053-1061 https://doi.org/10.1016/0360-3016(84)90177-9
  13. Martin M, Vozenin MC, Gault N, Crechet F, Pfarr CM, Lefaix JL. Coactivation of AP-1 activity and TGF-beta1 gene expression in the stress response of normal skin cells to ionizing radiation. Oncogene 1997;15:981-989 https://doi.org/10.1038/sj.onc.1201433
  14. Flanders KC. Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 2004;85:47-64 https://doi.org/10.1111/j.0959-9673.2004.00377.x
  15. Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med 1994;331:1286-1292 https://doi.org/10.1056/NEJM199411103311907
  16. Randall K, Coggle JE. Expression of transforming growth factor-beta 1 in mouse skin during the acute phase of radiation damage. Int J Radiat Biol 1995;68:301-309 https://doi.org/10.1080/09553009514551231