References
- Bos GD, Goldberg VM, Powell AE, Heiple KG, Zika JM. The effect of histocompatibility matching on canine frozen bone allografts. J Bone Joint Surg Am 1983;65:89-96. https://doi.org/10.2106/00004623-198365010-00012
- Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 1986;205:299-308.
- Bodde EW, Spauwen PH, Mikos AG, Jansen JA. Closing capacity of segmental radius defects in rabbits. J Biomed Mater Res A 2008;85:206-17.
- Frame JW. A convenient animal model for testing bone substitute materials. J Oral Surg 1980;38:176-80.
- Le Guehennec L, Goyenvalle E, Aguado E, Houchmand-Cuny M, Enkel B, Pilet P, et al. Small-animal models for testing macroporous ceramic bone substitutes. J Biomed Mater Res B Appl Biomater 2005;72:69-78.
- Gilsanz V, Roe TF, Gibbens DT, Schulz EE, Carlson ME, Gonzalez O, et al. Effect of sex steroids on peak bone density of growing rabbits. Am J Physiol 1988;255:E416-21.
- Newman E, Turner AS, Wark JD. The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone 1995;16:277S-84S. https://doi.org/10.1016/S8756-3282(95)80121-9
- Castaneda S, Largo R, Calvo E, Rodriguez-Salvanes F, Marcos ME, Diaz-Curiel M, et al. Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits. Skeletal Radiol 2006;35:34-41. https://doi.org/10.1007/s00256-005-0022-z
- Pripatnanont P, Nuntanaranont T, Vongvatcharanon S. Proportion of deproteinized bovine bone and autogenous bone affects bone formation in the treatment of calvarial defects in rabbits. Int J Oral Maxillofac Surg 2009;38:356-62. https://doi.org/10.1016/j.ijom.2009.02.015
- Gosain AK, Santoro TD, Song LS, Capel CC, Sudhakar PV, Matloub HS. Osteogenesis in calvarial defects: contribution of the dura, the pericranium, and the surrounding bone in adult versus infant animals. Plast Reconstr Surg 2003;112:515-27. https://doi.org/10.1097/01.PRS.0000070728.56716.51
- Xu S, Lin K, Wang Z, Chang J, Wang L, Lu J, et al. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials 2008;29:2588-96. https://doi.org/10.1016/j.biomaterials.2008.03.013
- Hammerle CH, Schmid J, Olah AJ, Lang NP. Osseous healing of experimentally created defects in the calvaria of rabbits using guided bone regeneration. A pilot study. Clin Oral Implants Res 1992;3:144-7. https://doi.org/10.1034/j.1600-0501.1992.030307.x
- Kramer IR, Killey HC, Wright HC. A histological and radiological comparison of the healing of defects in the rabbit calvarium with and without implanted heterogeneous anorganic bone. Arch Oral Biol 1968;13:1095-106. https://doi.org/10.1016/0003-9969(68)90063-0
- Lundgren D, Nyman S, Mathisen T, Isaksson S, Klinge B. Guided bone regeneration of cranial defects, using biodegradable barriers: an experimental pilot study in the rabbit. J Craniomaxillofac Surg 1992;20:257-60. https://doi.org/10.1016/S1010-5182(05)80438-X
- Pallesen L, Schou S, Aaboe M, Hjorting-Hansen E, Nattestad A, Melsen F. Influence of particle size of autogenous bone grafts on the early stages of bone regeneration: a histologic and stereologic study in rabbit calvarium. Int J Oral Maxillofac Implants 2002;17:498-506.
- Shand JM, Heggie AA, Holmes AD, Holmes W. Allogeneic bone grafting of calvarial defects: an experimental study in the rabbit. Int J Oral Maxillofac Surg 2002;31:525-31. https://doi.org/10.1054/ijom.2002.0281
- Cameron S. Hand-held computers in medicine. Can Fam Physician 2002;48:111-2.
- Nagata MJ, Melo LG, Messora MR, Bomfim SR, Fucini SE, Garcia VG, et al. Effect of platelet-rich plasma on bone healing of autogenous bone grafts in critical-size defects. J Clin Periodontol 2009;36:775-83. https://doi.org/10.1111/j.1600-051X.2009.01450.x
- Melo LG, Nagata MJ, Bosco AF, Ribeiro LL, Leite CM. Bone healing in surgically created defects treated with either bioactive glass particles, a calcium sulfate barrier, or a combination of both materials. A histological and histometric study in rat tibias. Clin Oral Implants Res 2005;16:683-91. https://doi.org/10.1111/j.1600-0501.2005.01090.x
- Cavalcanti SC, Pereira CL, Mazzonetto R, de Moraes M, Moreira RW. Histological and histomorphometric analyses of calcium phosphate cement in rabbit calvaria. J Craniomaxillofac Surg 2008;36:354-9. https://doi.org/10.1016/j.jcms.2008.02.005
- Durmus E, Celik I, Aydin MF, Yildirim G, Sur E. Evaluation of the biocompatibility and osteoproductive activity of ostrich eggshell powder in experimentally induced calvarial defects in rabbits. J Biomed Mater Res B Appl Biomater 2008;86:82-9.
- Torres J, Tamimi FM, Tresguerres IF, Alkhraisat MH, Khraisat A, Lopez-Cabarcos E, et al. Effect of solely applied platelet-rich plasma on osseous regeneration compared to Bio-Oss: a morphometric and densitometric study on rabbit calvaria. Clin Implant Dent Relat Res 2008;10:106-12. https://doi.org/10.1111/j.1708-8208.2007.00068.x
- Glowacki J, Altobelli D, Mulliken JB. Fate of mineralized and demineralized osseous implants in cranial defects. Calcif Tissue Int 1981;33:71-6. https://doi.org/10.1007/BF02409414
- Strates BS, Connolly JF. Osteogenesis in cranial defects and diffusion chambers. Comparison in rabbits of bone matrix, marrow, and collagen implants. Acta Orthop Scand 1989;60:200-3. https://doi.org/10.3109/17453678909149254
- Urist MR, Nilsson O, Rasmussen J, Hirota W, Lovell T, Schmalzreid T, et al. Bone regeneration under the influence of a bone morphogenetic protein (BMP) beta tricalcium phosphate (TCP) composite in skull trephine defects in dogs. Clin Orthop Relat Res 1987;214:295-304.
- Vogeler KT, Redenz E, Walter H, Martin G, Deutsche Gesellschaft fur Chirurgie. Bernhard Heines Versuche uber Knochenregeneration: sein Leben und seine Zeit. Berlin: J. Springer; 1926.
- Greenwald JA, Mehrara BJ, Spector JA, Chin GS, Steinbrech DS, Saadeh PB, et al. Biomolecular mechanisms of calvarial bone induction: immature versus mature dura mater. Plast Reconstr Surg 2000;105:1382-92. https://doi.org/10.1097/00006534-200004040-00018
- Huh JY, Choi BH, Kim BY, Lee SH, Zhu SJ, Jung JH. Critical size defect in the canine mandible. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005;100:296-301. https://doi.org/10.1016/j.tripleo.2004.12.015
Cited by
- Bone Formation with Two Types of Grafting Materials: A Histologic and Histomorphometric Study vol.5, pp.None, 2011, https://doi.org/10.2174/1874210601105010096
- Comparative evaluation of three calcium phosphate synthetic block bone graft materials for bone regeneration in rabbit calvaria vol.b100, pp.8, 2010, https://doi.org/10.1002/jbm.b.32768
- Nanoindentation Measurements of Biomechanical Properties in Mature and Newly Formed Bone Tissue Surrounding an Implant vol.134, pp.2, 2010, https://doi.org/10.1115/1.4005981
- Synergistic effect of bone marrow-derived mesenchymal stem cells and platelet-rich plasma on bone regeneration of calvarial defects in rabbits vol.9, pp.1, 2010, https://doi.org/10.1007/s13770-012-0017-5
- Comparison of bone regeneration using three demineralized freeze-dried bone allografts: A histological and histomorphometric study in rabbit calvaria vol.9, pp.5, 2010, https://doi.org/10.4103/1735-3327.104873
- A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices vol.218, pp.1, 2010, https://doi.org/10.1016/j.jneumeth.2013.06.001
- Effects of preparation methods on the bone formation potential of apatite-coated chitosan microspheres. vol.25, pp.18, 2010, https://doi.org/10.1080/09205063.2014.970604
- Evolution of bone biomechanical properties at the micrometer scale around titanium implant as a function of healing time vol.59, pp.6, 2010, https://doi.org/10.1088/0031-9155/59/6/1389
- Guidance of In Vitro Migration of Human Mesenchymal Stem Cells and In Vivo Guided Bone Regeneration Using Aligned Electrospun Fibers vol.20, pp.15, 2010, https://doi.org/10.1089/ten.tea.2013.0282
- Osteoconductivity and biodegradation of synthetic bone substitutes with different tricalcium phosphate contents in rabbits vol.102, pp.1, 2010, https://doi.org/10.1002/jbm.b.32984
- ECM Inspired Coating of Embroidered 3D Scaffolds Enhances Calvaria Bone Regeneration vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/217078
- Paracrine effect of the bone morphogeneticprotein-2 at the experimental site on healing of the adjacent control site: a study in the rabbit calvarial defect model vol.44, pp.4, 2010, https://doi.org/10.5051/jpis.2014.44.4.178
- Assessment of Bone Healing in Rabbit Calvaria Grafted with Three Different Biomaterials vol.25, pp.5, 2010, https://doi.org/10.1590/0103-6440201302383
- Tomographic and histometric analysis of autogenous bone block and synthetic hydroxyapatite block grafts without rigid fixation on rabbit calvaria vol.44, pp.5, 2010, https://doi.org/10.5051/jpis.2014.44.5.251
- Comparative evaluation of biphasic calcium phosphate and biphasic calcium phosphate collagen composite on osteoconductive potency in rabbit calvarial defect vol.19, pp.None, 2010, https://doi.org/10.1186/s40824-014-0026-7
- Regeneration of rabbit calvarial defects using cells-implanted nano-hydroxyapatite coated silk scaffolds vol.19, pp.None, 2010, https://doi.org/10.1186/s40824-015-0027-1
- Guided bone regeneration using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-cross-linked type-I collagen membrane with biphasic calcium phosphate at rabbit calvarial defects vol.19, pp.None, 2010, https://doi.org/10.1186/s40824-015-0038-y
- Evaluation of the Bone Defect Regeneration after Implantation with Cuttlebone in Rabbit vol.32, pp.5, 2010, https://doi.org/10.17555/jvc.2015.10.32.5.410
- Repairing calvarial defects with biodegradable polycaprolactone-chitosan scaffolds fabricated using the melt stretching and multilayer deposition technique vol.25, pp.4, 2015, https://doi.org/10.3233/bme-151539
- Analyses Using Micro-CT Scans and Tissue Staining on New Bone Formation and Bone Fusion According to the Timing of Cranioplasty via Frozen Autologous Bone Flaps in Rabbits : A Preliminary Report vol.57, pp.4, 2015, https://doi.org/10.3340/jkns.2015.57.4.242
- Effectiveness of biphasic calcium phosphate block bone substitutes processed using a modified extrusion method in rabbit calvarial defects vol.45, pp.2, 2010, https://doi.org/10.5051/jpis.2015.45.2.46
- Defect healing with various bone substitutes vol.26, pp.5, 2010, https://doi.org/10.1111/clr.12395
- Piezosurgical Suturectomy and Sutural Distraction Osteogenesis for the Treatment of Unilateral Coronal Synostosis vol.3, pp.8, 2010, https://doi.org/10.1097/gox.0000000000000382
- Critical size defects for bone regeneration experiments in rabbit calvariae: systematic review and quality evaluation using ARRIVE guidelines vol.26, pp.8, 2010, https://doi.org/10.1111/clr.12406
- Preclinical in vivo Performance of Novel Biodegradable, Electrospun Poly(lactic acid) and Poly(lactic-co-glycolic acid) Nanocomposites: A Review vol.8, pp.8, 2010, https://doi.org/10.3390/ma8084912
- Bone Formation Effect of the RGD-bioconjugated Mussel Adhesive Proteins Composite Hydroxypropyl Methylcellulose Hydrogel Based Nano Hydroxyapatite and Collagen Membrane in Rabbits vol.7, pp.2, 2010, https://doi.org/10.15433/ksmb.2015.7.2.058
- Effect of Doxycycline in Gel Form on Bone Regeneration: Histomorphometric and Tomographic Study in Rat Calvaria vol.87, pp.1, 2010, https://doi.org/10.1902/jop.2015.150343
- Construction of Radial Defect Models in Rabbits to Determine the Critical Size Defects vol.11, pp.1, 2010, https://doi.org/10.1371/journal.pone.0146301
- Xenografts Supplemented with Pamindronate placed in postextraction sockets to avoid crestal bone resorption. Experimental study in Fox hound dogs vol.27, pp.2, 2010, https://doi.org/10.1111/clr.12550
- In vivo evaluation of a simvastatin-loaded nanostructured lipid carrier for bone tissue regeneration vol.27, pp.11, 2016, https://doi.org/10.1088/0957-4484/27/11/115708
- Effect of Resorbable Collagen Plug on Bone Regeneration in Rat Critical-Size Defect Model vol.25, pp.2, 2010, https://doi.org/10.1097/id.0000000000000396
- Modified poly(caprolactone trifumarate) with embedded gelatin microparticles as a functional scaffold for bone tissue engineering vol.133, pp.30, 2010, https://doi.org/10.1002/app.43711
- Bone regenerative efficacy of biphasic calcium phosphate collagen composite as a carrier of rhBMP‐2 vol.27, pp.11, 2010, https://doi.org/10.1111/clr.12568
- Histologic and histomorphometric evaluation of bone regeneration using nanocrystalline hydroxyapatite and human freeze-dried bone graft : An experimental study in rabbit vol.78, pp.2, 2010, https://doi.org/10.1007/s00056-016-0067-8
- ‘Reliability of new poly (lactic-co-glycolic acid) membranes treated with oxygen plasma plus silicon dioxide layers for pre-prosthetic guided bone regeneration processes’ vol.22, pp.2, 2010, https://doi.org/10.4317/medoral.21512
- The role of rhFGF-2 soaked polymer membrane for enhancement of guided bone regeneration vol.29, pp.7, 2010, https://doi.org/10.1080/09205063.2017.1354676
- Rabbit Calvarial Defect Model for Customized 3D-Printed Bone Grafts vol.24, pp.5, 2010, https://doi.org/10.1089/ten.tec.2017.0474
- To what extent does hyaluronic acid affect healing of xenografts? A histomorphometric study in a rabbit model vol.26, pp.None, 2010, https://doi.org/10.1590/1678-7757-2017-0004
- Effect of Semelil, an Herbal Selenium-Based Medicine, on New Bone Formation in Calvarium of Rabbits vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/2860367
- Comparative study of new bone formation capability of zirconia bone graft material in rabbit calvarial vol.10, pp.3, 2018, https://doi.org/10.4047/jap.2018.10.3.167
- Comparison of three block bone substitutes for bone regeneration: long-term observation in the beagle dog vol.106, pp.4, 2018, https://doi.org/10.1007/s10266-018-0352-7
- Biomimetic characteristics of mussel adhesive protein-loaded collagen membrane in guided bone regeneration of rabbit calvarial defects vol.48, pp.5, 2018, https://doi.org/10.5051/jpis.2018.48.5.305
- Comparative Study on Acellular Dermal Graft Versus Propylene Mesh Both Either Loaded or Unloaded with BM-MSCs in Healing of Skull Bone Defect in Rats: Histological and Immunohistochemical Study vol.11, pp.2, 2010, https://doi.org/10.15283/ijsc18019
- Effects of Enhanced Hydrophilic Titanium Dioxide-Coated Hydroxyapatite on Bone Regeneration in Rabbit Calvarial Defects vol.19, pp.11, 2010, https://doi.org/10.3390/ijms19113640
- Optimized Bone Regeneration in Calvarial Bone Defect Based on Biodegradation-Tailoring Dual-shell Biphasic Bioactive Ceramic Microspheres vol.8, pp.None, 2010, https://doi.org/10.1038/s41598-018-21778-z
- Bone Regeneration Using Block-type Deproteinized Porcine Bone Mineral with Collagen Membrane Using 3,4-Dihydroxyphenylalanine as Bone Adhesive vol.11, pp.2, 2018, https://doi.org/10.5856/jkds.2018.11.2.43
- Reconstruction of calvarial bone defects using poly(amino acid)/hydroxyapatite/calcium sulfate composite vol.30, pp.2, 2019, https://doi.org/10.1080/09205063.2018.1554833
- Influence of in vitro differentiation status on the in vivo bone regeneration of cell/chitosan microspheres using a rat cranial defect model vol.30, pp.12, 2010, https://doi.org/10.1080/09205063.2019.1619959
- 3D‐printed polycaprolactone scaffold mixed with β‐tricalcium phosphate as a bone regenerative material in rabbit calvarial defects vol.107, pp.4, 2010, https://doi.org/10.1002/jbm.b.34218
- Histological and Histomorphometric Analyses of Two Bovine Bone Blocks Implanted in Rabbit Calvaria vol.11, pp.5, 2010, https://doi.org/10.3390/sym11050641
- Effect of Collagen Cross-Link Deficiency on Incorporation of Grafted Bone vol.7, pp.2, 2019, https://doi.org/10.3390/dj7020045
- The Application of microRNAs in Biomaterial Scaffold‐Based Therapies for Bone Tissue Engineering vol.14, pp.10, 2010, https://doi.org/10.1002/biot.201900084
- Locally administrated single-dose teriparatide affects critical-size rabbit calvarial defects: A histological, histomorphometric and micro-CT study vol.53, pp.6, 2010, https://doi.org/10.1016/j.aott.2019.08.007
- Effect of clopidogrel in bone healing-experimental study in rabbits vol.10, pp.12, 2010, https://doi.org/10.5312/wjo.v10.i12.434
- Vertical Guided Bone Regeneration in the Rabbit Calvarium Using Porous Nanohydroxyapatite Block Grafts Coated with rhVEGF 165 and Cortical Perforation vol.15, pp.None, 2020, https://doi.org/10.2147/ijn.s268182
- The Impact of Bioceramic Scaffolds on Bone Regeneration in Preclinical In Vivo Studies: A Systematic Review vol.13, pp.7, 2020, https://doi.org/10.3390/ma13071500
- Improvement of bone repair with l-PRF and bovine bone in calvaria of rats. histometric and immunohistochemical study vol.24, pp.5, 2020, https://doi.org/10.1007/s00784-019-03018-4
- Micro-CT and Histomorphometric Study of Bone Regeneration Effect with Autogenous Tooth Biomaterial Enriched with Platelet-Rich Fibrin in an Animal Model vol.2021, pp.None, 2010, https://doi.org/10.1155/2021/6656791
- Analysis on Efficacy of Chitosan-Based Gel on Bone Quality and Quantity vol.8, pp.None, 2021, https://doi.org/10.3389/fmats.2021.640950
- 3D Printed Porous Methacrylate/Silica Hybrid Scaffold for Bone Substitution vol.10, pp.12, 2010, https://doi.org/10.1002/adhm.202100117
- 3D-Printed Barrier Membrane Using Mixture of Polycaprolactone and Beta-Tricalcium Phosphate for Regeneration of Rabbit Calvarial Defects vol.14, pp.12, 2021, https://doi.org/10.3390/ma14123280
- The Effectiveness of Compartmentalized Bone Graft Sponges Made Using Complementary Bone Graft Materials and Succinylated Chitosan Hydrogels vol.9, pp.12, 2021, https://doi.org/10.3390/biomedicines9121765