DOI QR코드

DOI QR Code

Characterization of the Pathogenesis Mechanism after Pseudomonas aeruginosa Infection through Food Consumption Using Chick Embryo Model

  • Song, Jin-Soo (Department of Biological Sciences, College of Natural Sciences, Wonkwang University) ;
  • Jin, Eun-Jung (Department of Biological Sciences, College of Natural Sciences, Wonkwang University) ;
  • Choi, Kyoung-Hee (Department of Oral Microbiology, College of Dentistry, Wonkwang University)
  • Received : 2010.04.22
  • Accepted : 2010.05.28
  • Published : 2010.08.31

Abstract

This study introduced a chick embryos’ infection model to elucidate the pathogenesis mechanism of Pseudomonas aeruginosa, which causes serious diseases in human after ingestion of P. aeruginosa-contaminated animal originated foods. The embryonic chick model is able to give a rapid and relatively inexpensive method to assess bacterial pathogenicity compared to embryos of other vertebrates. Embryos were infected with P. aeruginosa and elastase-deficient P. aeruginosa. After infection with P. aeruginosa cells, total bacterial cell numbers and gelatinase activities in the embryos were compared. Thereafter, precartilage condensation and chondrogenesis were assessed by peanut agglutinin (PNA) binding on day 3 and by Alcian blue staining for sulfated proteoglycans on day 5, respectively. P. aeruginosa significantly increased in embryos, resulting in abnormal limb development, whereas P. aeruginosa defective in elastase activity partly impaired proliferation. In addition, P. aeruginosa-infected chick embryos significantly stimulated the production of matrix metalloproteinases. Several analyses showed that elevated proteases suppressed the proliferation and survival of chondrogenic cells. The results show that this infection model was a useful assay to determine the virulence mechanism of P. aeruginosa in human after intake of microbiologically contaminated foods.

Keywords

References

  1. Ahrens, M., Ankenbauer, T., Schröder, D., Hollnagel, A., Mayer, H., and Gross, G. (1993) Expression of human bone morphogenetic proteins-2 or -4 in murine mesenchymal progenitor C3H10T1/2 cells induces differentiation into distinct mesenchymal cell lineages. DNA Cell. Biol. 12, 871-880.
  2. Bower, C. K., McGuire, J., and Daeschel, M. A. (1996) The adhesion and detachment of bacteria and spores on food-contact surfaces. Trends Food Sci. Tech. 7, 152-157. https://doi.org/10.1016/0924-2244(96)81255-6
  3. Buddingh, G. J. (1970) The chick embryo for the study of infection and immunity. J. Infect. Dis. 121, 660-663. https://doi.org/10.1093/infdis/121.6.660
  4. Bumgarner, L. R. and Finkelstein, R. A. (1973) Pathogenesis and immunology of experimental gonococcal infection: virulence of colony types of Neisseria gonorrhoeae for chicken embryos. Infect. Immun. 8, 919-924.
  5. Choi, K. H. and Schweizer, H. P. (2006) mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat. Prot. 1, 153-161. https://doi.org/10.1038/nprot.2006.24
  6. Clatworthy, A. E., Lee, J. S., Leibman, M., Kostun, Z., Davidson, A. J., and Hung, D. T. (2009) Pseudomonas aeruginosa infection of zebrafish involves both host and pathogen determinants. Infect. Immun. 77, 1293-1303. https://doi.org/10.1128/IAI.01181-08
  7. Collard, J. M., Bertrand, S., Dierick, K., Godard, C., Wildemauwe, C., Vermeersch, K., Duculot, J., Van Immerseel, F., Pasmans, F., Imberechts, H., and Quinet, C. (2007) Drastic decrease of Salmonella Enteritidis isolated from humans in Belgium in 2005, shift in phage types and influence on foodborne outbreaks. Epidemiol. Infect. 136, 771-781.
  8. Cowell, B. A., Twining, S. S., Jeffrey, A. H., Kwong, M. S. F., and Fleiszig, S. M. J. (2003) Mutation of lasA and lasB reduces Pseudomonas aeruginosa invasion of epithelial cells. Microbiol. 149, 2291-2299. https://doi.org/10.1099/mic.0.26280-0
  9. Cunningham, F. E. (1995) Egg-product pasteurization. In: Egg science and technology. Stadelman, W. J. and Cotterill, O. J. (eds) Food Products Press, NY, 289-322.
  10. D'Argenio, D. A., Gallagher, L. A., Berg, C. A., and Manoli, C. (2001) Drosophila as a model host for Pseudomonas aeruginosa infection. J. Bacteriol. 183, 1466-1471. https://doi.org/10.1128/JB.183.4.1466-1471.2001
  11. Diena, B. B, Lavergne, G., Ryan, A., Ashton, F. E., Wallace, R., and Perry, M. (1975) The chick embryo in studies of virulence and immunity with Neisseria gonorrhoeae. Rev. Can. Biol. 34, 213-220.
  12. EFSA (European Food Safety Authority) (2007) Salmonella. The community summary report on trends and sources of zoonoses, zoonotic agents, antimicrobial resistance and foodborne outbreaks in the European Union in 2005. 27-81.
  13. Frasch, C. E., Parkes, L., MeNelis, R. M., and Gotschlick, E. C. (1976) Protection against group B meningococcal disease. I. Comparison of group-specific and type-specific protection in the chick embryo model. J. Exp. Med. 1144, 319-329.
  14. Gram, L., Ravn, L., Rasch, M., Bruhn, J. B., Christensen, A. B., and Givskov, M. (2002) Food spoilage−interactions between food spoilage bacteria. Int. J. Food Microbiol.78, 79-97. https://doi.org/10.1016/S0168-1605(02)00233-7
  15. Hamburger, V. and Hamilton, H. L. (1951) A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49-92. https://doi.org/10.1002/jmor.1050880104
  16. Hartl, A., Mollmann, U., Schrinner, E., and Stelzner, A. (1997) Pseudomonas aeruginosa in embryonated hen's eggs. An alternatives in vivo model for the screening of antibacterial substances. Arzneimittelforschung 47, 1061-1064.
  17. Heck, L. W., Morihara, K., McRae, W. B., and Miller, E. J. (1986) Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase. Infect. Immun. 51, 115-118.
  18. Kessler, E. and Safrin, M. (1997) Inhibitors and specificity of Pseudomonas aeruginosa LasA. J. Biol. Chem. 272, 9884-9889. https://doi.org/10.1074/jbc.272.15.9884
  19. Lierz, M., and Hafez, H. M. (2008) Time-dependent recovery of Mycoplasma lipofaciens (strain ML64) from incubated infertile chicken eggs and dead in shell chicken embryos. Avian Dis. 52, 441-443. https://doi.org/10.1637/8200-122807-Reg.1
  20. Mackenzie, K. A. and Skerman, V. B. D. (1982) Microbial spoilage in unpasteurised liquid whole egg. Food Technol. Aust. 34, 524-528.
  21. Mahajan-Miklos, S., Tan, M. W., Rahme, L. G., and Ausubel, F. M. (1999) Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96, 47-56. https://doi.org/10.1016/S0092-8674(00)80958-7
  22. Maini, P. K. and Solursh, M. (1991) Cellular mechanisms of pattern formation in the developing limb. Int. Rev. Cytol. 129, 91-133. https://doi.org/10.1016/S0074-7696(08)60510-0
  23. Miyajima, S., Akaike, T., Matsumoto, K., Okamoto, T., Yoshitake, J., Hayashida K, Negi, A., and Maeda, H. (2001) Matrix metalloproteinases induction by pseudomonal virulence factors and inflammatory cytokines in vitro. Microb. Pathog. 31, 271-281. https://doi.org/10.1006/mpat.2001.0470
  24. Namata, H., Welby, S., Aerts, M., Faes, C., Abrahantes, J. C., Imberechts, H., Vermeersch, K., Hooyberghs, J., Méroc, E., and Mintiens, K. (2009) Identification of risk factors for the prevalence and persistence of Salmonella in Belgian broiler chicken flocks. Prev. Vet. Med. 90, 211-222. https://doi.org/10.1016/j.prevetmed.2009.03.006
  25. Nix, E. B., Cheung, K. K. M., Wang, D., Zhang, N., Burke, R. D., and Nano, F. E. (2006) Virulence of Francisella spp. Chicken embryos. Infect. Immun. 74, 4809-4816. https://doi.org/10.1128/IAI.00034-06
  26. Payne, S. M., and Finkelstein, R. A. (1978) The critical role of iron in host-bacterial interactions. J. Clin. Invest. 61, 1428-1440. https://doi.org/10.1172/JCI109062
  27. Pukatzki, S., Kessin, R. H., and Mekalanos, J. J. (2002) The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 99, 3159-3164. https://doi.org/10.1073/pnas.052704399
  28. Schmidt-Lorenz, W. (1983) Collection of methods for the microbiological examination of foods. Verlag Chemie, Weinheim, Germany, 15.1-15.22
  29. Solursh, M. (1989) Differentiation of cartilage and bone. Curr. Opin. Cell. Biol. 1, 989-994. https://doi.org/10.1016/0955-0674(89)90070-7
  30. Tamura, Y., Suzuki, S., and Sawada, T. (1992) Role of elastase as a virulence factor in experimental Pseudomonas aeruginosa infection in mice. Microb. Pathog. 12, 237-244. https://doi.org/10.1016/0882-4010(92)90058-V
  31. Tang, H. B., Dimango, E., Brian, M. J., Gambello, M. J., Iglewski, B. J., Goldberg JB, and Prince, A. (1996) Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect. Immun. 64, 37-43.
  32. Twinning, S. S., Kirschner, S. E., Mahnke, L. A., and Franke, D. W. (1993) Effect of Pseudomonas aeruginosa elastase, alkaline protease, and exotoxin A on corneal proteinases and proteins. Invest. Ophthalmol. Vis. Sci. 34, 2699-2712.
  33. Van Delden, C. V. (2004) Virulence factors in Pseudomonas aeruginosa. In: Pseudomonas: virulence and gene regulation. Kluwer Academic/Plenum Publishers, New York, pp. 23-45.
  34. Van Delden, C., and Iglewski, B. H. (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis. 4, 551-560. https://doi.org/10.3201/eid0404.980405