Application of Macrocell Sensor System for Monitoring of Steel Corrosion in Concrete Structure Exposed to Marine Environment

해양 콘크리트구조물의 철근부식 모니터링을 위한 매크로셀 센서 시스템의 적용

  • Received : 2010.03.25
  • Accepted : 2010.08.11
  • Published : 2010.08.31

Abstract

Corrosion of steel embedded in concrete is one of the foremost factors that affect the durability of concrete structures in marine environments. This paper presents an application technique of anode-ladder-system to evaluate corrosion behaviours of marine concrete structure. In order to investigate the behaviours quantitatively, the measurement of potential and current was performed on the concrete elements subjected to the penetration and diffusion of chloride ions. The main variable was the heights from seawater level; namely 3.7, 6.0 and 8.2 m. As a result of the monitoring, it was found that the corrosion characteristics differently behaved with the increasing height. Additionally, through migration test, the relationship between compressive strength of concrete and diffusivity of chloride ions was observed. It is suggested, ultimately, that in order to reduce or mitigate steel corrosion, both appropriate concrete cover depth and high-quality of concrete in early ages should be done.

철근부식은 해양 콘크리트 구조물의 내구성능을 저하시키는 가장 중요한 인자 중 하나이다. 본 논문은 해양환경에 노출된 콘크리트 구조물의 부식거동을 평가하기 위하여 매크로셀 센서 기법 중 하나인 anode-ladder-system의 적용성을 평가한 것이다. 해양환경으로부터 유입되는 염화물의 침투, 확산에 의한 철근부식 위험성에 노출되어 있는 철근콘크리트 구조물의 전위 및 전류를 측정하여 철근의 부식거동을 정성적으로 평가하였다. 부식 모니터링 센서는 평균 해수면으로부터 각각 3.7, 6.0 및 8.2 m 높이에 매설하였으며, 애노드 단자의 부식특성은 평균해수면의 거리에 따라 다르게 거동함을 확인하였다. 또, migration 실험을 통하여 콘크리트 강도와 확산거동과의 관계를 고찰하였다. 결론적으로, 해양 콘크리트 구조물의 부식을 방지 및 완화하기 위해서는 적절한 콘크리트 피복두께의 확보 및 초기 콘크리트의 품질 개선이 중요한 것으로 조사되었다.

Keywords

References

  1. Al-Khaja, W.A. (1997). Influence of temperature, cement type and level of concrete consolidation on chloride ingress in conventional and high-strength concretes. Construction and Building Materials, 11(1), 9-13. https://doi.org/10.1016/S0950-0618(97)00004-4
  2. Andrade, C. and Alonso, C. (1996). Corrosion rate monitoring in the laboratory and on-site. Construction and Building Materials, 10(5), 315-328. https://doi.org/10.1016/0950-0618(95)00044-5
  3. Elahi, A., Basheer, P.A.M., Nanukuttan, S.V. and Khan, Q.U.Z. (2010). Mechanical and durability properties of high performance concretes containing supplementary cementitious materials, Construction and Building Materials, 24(3), 292-299. https://doi.org/10.1016/j.conbuildmat.2009.08.045
  4. Elsener, B. (2002). Macrocell corrosion of steel in concrete - implications for corrosion monitoring. Cement and Concrete Composites, 24(1), 65-72. https://doi.org/10.1016/S0958-9465(01)00027-0
  5. Glass, G.K. and Buenfeld, N.R. (1997). The presentation of the chloride threshold level for corrosion of steel in concrete. Corrosion Science, 39(5), 1001-1013. https://doi.org/10.1016/S0010-938X(97)00009-7
  6. Johannesson, B.F. (2003). A theoretical model describing diffusion of a mixture of different types of ions in pore solution of concrete coupled to moisture transport. Cement and Concrete Research, 33(4), 481-488. https://doi.org/10.1016/S0008-8846(02)00993-6
  7. Kitago, M., Kabayashi, S., Kikuchi, Y., Miyakawa, T. and Fujii, M. (1996). Study on influence of compound factor concerning corrosion of steel of concrete structure. Material, 45(9), 1048-1054.
  8. Manera, M., Vennesland, O. and Bertolini, L. (2008). Chloride threshold for rebar corrosion in concrete with addition of silica fume. Corrosion Science, 50(2), 554-560. https://doi.org/10.1016/j.corsci.2007.07.007
  9. Mehta, P.K. (1993). Concrete: Structures, Properties and Materials, Prentice-Hall, Inc., New Jersey, 196.
  10. NT BUILD 492. (1999). Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments. Finland, Nordtest.
  11. Raupach, M. (1996). Chloride-induced microcell corrosion of steel in concrete-Theoretical background and practical consequences. Construction and Building Materials, 10(5), 329-338. https://doi.org/10.1016/0950-0618(95)00018-6
  12. Raupach, M. and Schiebl, P. (2001). Macrocell sensor system for monitoring of the corrosion risk of the reinforcement in concrete structures. NDT&E International, 34(6), 435-442. https://doi.org/10.1016/S0963-8695(01)00011-1
  13. Sagues, A.A., Pech-Canul, M.A. and Al-Mansur, A.K.M.S. (2003). Corrosion macrocell behavior of reinforcing steel in partially submerged concrete columns. Corrosion Science, 45(1), 7-32. https://doi.org/10.1016/S0010-938X(02)00087-2
  14. Schiebl, P. and Raupach, M. (1990). Corrosion of reinforcement in concrete. International Symposium, Wishaw, Waewickshire, UK, London, 49-58.
  15. Shekarchi, M., Rafiee, A. and Layssi, H. (2009). Long-term chloride diffusion in silica fume concrete in harsh marine climates. Cement and Concrete Composites, 31(10), 769-775. https://doi.org/10.1016/j.cemconcomp.2009.08.005
  16. Song, H.W., Lee, C.H. and Ann, K.Y. (2008). Factors influencing chloride transport in concrete structures exposed to marine environments. Cement and Concrete Composites, 30(2), 113-121. https://doi.org/10.1016/j.cemconcomp.2007.09.005
  17. Sun, W., Zhang, Y., Liu, S. and Zhang, Y. (2004). The influence of mineral admixtures on resistance to corrosion of steel bars in green high-performance concrete. Cement and Concrete Research, 34(10), 1781-1785. https://doi.org/10.1016/j.cemconres.2004.01.008
  18. Thangavel, K. and Rengaswamy, N.S. (1998). Relationship between chloride/hydroxide ratio and corrosion rate of steel in concrete. Cement and Concrete Composites, 20(4), 283-292. https://doi.org/10.1016/S0958-9465(98)00006-7