DOI QR코드

DOI QR Code

Analysis of Extreme Values of Daily Percentage Increases and Decreases in Crude Oil Spot Prices

국제현물원유가의 일일 상승 및 하락율의 극단값 분석

  • Received : 20100900
  • Accepted : 20101000
  • Published : 2010.10.31

Abstract

Tools for statistical analysis of extreme values include the classical annual maximum method, the modern threshold method and variants improving the second one. While the annual maximum method is to t th generalized extreme value distribution to the annual maxima of a time series, the threshold method is to the generalized Pareto distribution to the excesses over a high threshold from the series. In this paper we deal with the Poisson-GPD method, a variant of the threshold method with a further assumption that the total number of exceedances follows the Poisson distribution, and apply it to the daily percentage increases and decreases computed from the spot prices of West Texas Intermediate, which were collected from January 4th, 1988 until December 31st, 2009. According to this analysis, the distribution of daily percentage increases as well as decreases turns out to have a heavy tail, unlike the normal distribution, which coincides well with the general phenomenon appearing in the analysis of lots of nowaday nancial data.

극단값 통계 분석의 도구로는 전통적인 연간 최대값 방법과 현대적인 분계점 방법, 그리고 분계점 방법을 개선한 변형체 등으로 분류할 수 있다. 연간 최대값 방법은 시계열자료의 연간 최대값들에 대하여 일반화극단값분포를 적합시키는 것이고, 분계점 방법은 충분히 큰 하나의 분계점을 넘어서는 초과값들의 초과여분들에 대하여 일반화파레토분포를 적합시키는 것이다. 분계점 방법의 한 변형체로서 본 논문에서는 분계점 방법에 추가적으로 초과값들의 전체 개수가 포아송분포를 따른다고 가정하는 포아송-GPD 방법을 다루고, 이를 1988.01.04부터 2009.12.31까지 수집된 서부텍사스산중질유의 현물가격 자료로부터 계산된 일일 상승율과 일일 하락율에 적용한다. 이에 따르면 일일 상승율과 일일 하락율의 분포는 정규분포와 달리 두터운 꼬리를 갖는 분포로 나타났는데, 이는 오늘날의 많은 금융 자료분석에서 나타나는 일반적인 현상과 잘 부합하는 것이다.

Keywords

References

  1. 윤석훈 (2009). 원/달러 환율 투자 손실률에 대한 극단분위수 추정, <한국통계학회논문집>, 16, 803-812. https://doi.org/10.5351/CKSS.2009.16.5.803
  2. Davison, A. C. and Smith, R. L. (1990). Models for exceedances over high thresholds (with discussion), Journal of the Royal Statistical Society, Series B, 52, 393-442.
  3. Engdahl, F. W. (2008). See http://www.engdahl.oilgeopolitics.net/Financial_Tsunami/Oil_, Specula-tion/oil_speculation.HTM.
  4. Fisher, R. A. and Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample, Proceedings of the Cambridge Philosophical Society, 24, 180-190. https://doi.org/10.1017/S0305004100015681
  5. Gnedenko, B. V. (1943). Sur la distribution limite du terme maximum d'une serie aleatoire, Annals of Mathematics, 44, 423-453. https://doi.org/10.2307/1968974
  6. Gumbel, E. J. (1958). Statistics of Extremes, Columbia University Press, New York.
  7. Pickands, J. (1975). Statistical inference using extreme order statistics, Annals of Statistics, 3, 119-131. https://doi.org/10.1214/aos/1176343003
  8. Smith, R. L. (1989). Extreme value analysis of environmental time series: An application to trend detection in ground-level ozone (with discussion), Statistical Science, 4, 367-393. https://doi.org/10.1214/ss/1177012400
  9. von Mises, R. (1936). La distribution de la plus grande de n valeurs, Reprinted in Selected Papers II, American Mathematical Society, Providence, R.I. (1954), 271-294.

Cited by

  1. A Bayesian Extreme Value Analysis of KOSPI Data vol.24, pp.5, 2011, https://doi.org/10.5351/KJAS.2011.24.5.833