DOI QR코드

DOI QR Code

Dimension Reduction in Time Series via Partially Quanti ed Principal Componen

부분-수량화를 통한 시계열 자료 분석에서의 차원축소

  • Park, J.A. (Department of Statistics, Sookmyung Women's University) ;
  • Hwang, S.Y. (Department of Statistics, Sookmyung Women's University)
  • 박진아 (숙명여자대학교 통계학과) ;
  • 황선영 (숙명여자대학교 통계학과)
  • Received : 20100700
  • Accepted : 20100800
  • Published : 2010.10.31

Abstract

We investigate a possible achievement in dimension reduction of time series via partially quantified principal component. Partial quantification technique allows us in modeling to accommodate artificial variable(s) of practical importance which is defined subjectively by the data analyst. Suggested procedures are described and in turn illustrated in detail by analyzing monthly unemployment rates in Korea.

차원 축소(dimension reduction) 기법은 주로 횡단면 자료 분석에서 널리 이용되어 왔으며 시계열 분석 분야에서의 적용은 상대적으로 미진한 실정이다. 본 논문에서는 부분-수량화를 통한 주성분분석 방법을 계절형 시계열에 적용시켜 시계열 자료의 차원 축소를 시도하고자 한다. 분석 방법론을 단계별로 제시하였으며 월별 실업률 자료 분석을 통해 설명하였다.

Keywords

References

  1. 서혜선 (1999). 인자분석에 의한 부분수량화, <응용통계연구>, 12, 165-179.
  2. 성웅현 (1997). <응용 다변량분석 -이론, 방법론, SAS 활용->, 탐진.
  3. 황선영, 이연숙 (1999). 정준판별분석의 조건부계량화, <응용통계연구>, 12, 517-525.
  4. 황선영, 정수진, 김영원 (2001). 다차원선호분석의 최적척도화 및 부분 수량화, <응용통계연구>, 14, 305-320.
  5. Park, J. H., Sriram, T. N. and Yin, X. (2009). Dimension reduction in time series, Statistica Sinica, 20, 747-770.
  6. Suh, H. S. and Huh, M. H. (1997). Partial quantification in principal component analysis, The Korean Communications in Statistics, 4, 637-644.
  7. Xia, Y. and Li, W. K. (1999). On the estimation and testing of functional coefficient linear models, Statistica Sinica, 9, 735-757.
  8. Xia, Y., Tong, H. and Li, W. K. (1999). On extended partially linear single-index models, Biometrika, 86, 831-842. https://doi.org/10.1093/biomet/86.4.831
  9. Xia, Y., Tong, H. and Li, W. K. (2002a). Single-index volatility models and estimation, Statistica Sinica, 12, 785-799.
  10. Xia, Y., Tong, H., Li, W. K. and Zhu, L. X. (2002b). An adaptive estimation of dimension reduction methods, Journal of the Royal Statistical Society: Series B, 64, 363-410.