References
- D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852. https://doi.org/10.1080/00927879908826596
- H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
- G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and associated radicals, Ring theory (Granville, OH, 1992), 102-129, World Sci. Publ., River Edge, NJ, 1993.
- V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615. https://doi.org/10.1016/j.jpaa.2007.06.010
- P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116
- K. R. Goodearl, von Neumann Regular Rings, Monographs and Studies in Mathematics, 4. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979.
- K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, Cambridge, 1989.
- S. U. Hwang, Y. C, Jeon, and Y. Lee, Structure and topological conditions of NI rings, J. Algebra 302 (2006), no. 1, 186-199. https://doi.org/10.1016/j.jalgebra.2006.02.032
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, With the cooperation of L. W. Small. Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, Ltd., Chichester, 1987.
- N. H. McCoy, Annihilators in polynomial rings, Amer. Math. Monthly 64 (1957), 28-29.
- P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134-141. https://doi.org/10.1016/j.jalgebra.2005.10.008
Cited by
- On Constant Zero-Divisors of Linear Polynomials vol.43, pp.3, 2015, https://doi.org/10.1080/00927872.2012.727201
- MCCOY CONDITION ON IDEALS OF COEFFICIENTS vol.50, pp.6, 2013, https://doi.org/10.4134/BKMS.2013.50.6.1887
- Special properties of the ring Sn(R) 2017, https://doi.org/10.1142/S0219498817502127
- α-Skewπ-McCoy Rings vol.2013, 2013, https://doi.org/10.1155/2013/309392
- ANNIHILATORS IN ONE-SIDED IDEALS GENERATED BY COEFFICIENTS OF ZERO-DIVIDING POLYNOMIALS vol.51, pp.3, 2014, https://doi.org/10.4134/JKMS.2014.51.3.495