DOI QR코드

DOI QR Code

지진시 앵커기초의 한계성능 평가를 위한 진동대 실험

Shaking Table Test for an Evaluation of the Limit State Capacity of an Anchor Foundation in the case of a Seismic Event

  • 김민규 (한국원자력연구소 종합안전평가부) ;
  • 최인길 (한국원자력연구소 종합안전평가부) ;
  • 권형오 (브이테크)
  • 투고 : 2010.06.16
  • 심사 : 2010.08.19
  • 발행 : 2010.10.31

초록

본 연구에서는 지진시 앵커기초의 파괴한계성능을 평가하기 위하여 진동대 실험을 수행하였다. 앵커기초에 발생 가능한 열화현상인 균열의 영향을 평가하기 위하여 균열이 없는 시편, 관통균열 시편 그리고 파괴예상면 내에 측면균열이 있는 시편을 제작하여 각각의 파괴한계성능을 평가하였다. 우선적으로 임팩트 해머에 의한 가진 실험을 통하여 동특성분석실험을 수행하여 실험모형의 동특성을 분석하였으며, 앵커기초의 파괴 시까지 진동대 실험을 수행하여 극한거동을 평가하였다. 최종적으로 앵커기초의 설계기준과 비교하여 거동특성을 분석하였다.

In this study, a shaking table test was performed for the evaluation of the failure capacity of an anchor foundation system in the case of an aged condition. For the shaking table test, three kinds of specimens were manufactured as follows: 1) a non-damaged anchor; 2) a specimen with cracks running through the anchor; and 3) a specimen with cracks along the expected corn-shape fracture away from the anchor. A dynamic characteristic was determined through a measurement of the frequency response function (FRF), and the seismic capacity was evaluated by using a shaking table test. Failure capacities were calculated using an acceleration response and it was compared with the anchor design code.

키워드

참고문헌

  1. SQUG, Generic Implementation Procedure (GIP) for Seismic Verification of Nuclear Plant Equipment, 1993.
  2. US NRC, Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants 3.8.4 Appendix E (Draft Rev. 2), 1996.
  3. KINS-G-001, 경수로형 원자력발전소 안전심사지침서, 한국원자력안전기술원, 1999.10.
  4. ACI 349-97, “Code Requirements for Nuclear Safe-Related Concrete Structures,” App. B, “Steel Embedments,” American Concrete Institute, 1997.
  5. ACI 349-01 “Code Requirements for Nuclear Safety Related Concrete Structures,” APPENDIX C-Special Provisions for Impulsive and Impactive Effects, American Concrete Institute, 2001.
  6. CEB Design Guide, “Design of Fastenings in Concrete,” 1997.
  7. 장정범, 서용표, 이종림, “직매형 앵커기초의 설계기준 개선에 관한 연구,” 대한토목학회 논문집, 23(6A), 1331-1338, 2003.
  8. Jang, J.B., and Suh, Y.P., “The experimental investigation of a crack’'s influence on the concrete breakout strength of a cast-in-place anchor,” Nuclear Engineering and Design, 236(9), 948-953, 2006. https://doi.org/10.1016/j.nucengdes.2005.09.018
  9. Stangenberg, F., and Jankowski, D., “Anchorages under Tensile Loading A Nonlinear Numerical Analysis,” Int. J. Pres. Ves. & Piping, 38, 341-353, 1989. https://doi.org/10.1016/0308-0161(89)90045-8
  10. Rodriguez, M., Zhang, Y.G., Lotez, D., Graves III, H.L., and Klingner, R.E., “Dynamic behaviour of anchors in cracked and uncracked concrete: a progress report,” Nuclear Engineering and Design, 168, 23-34, 1997. https://doi.org/10.1016/S0029-5493(96)01298-8
  11. NUREG/CR-5563, A Technical Basis for Revision to Anchorage Criteria, USNRC, Washigton, D.C., 1999.
  12. NUREG/CR-5434, Anchor Bolt Behavior and Strength During Earthquake, USNRC, Washigton, D.C., 1998.
  13. Obata, M., Inoue, M., and Goto, Y., “The failure mechanism and the pull-out strength of a bond-type anchor near a free edge,” Mechanics of Materials 28, 113-122, 1998. https://doi.org/10.1016/S0167-6636(97)00052-5
  14. 한국콘크리트학회 (2007), 콘크리트구조설계기준 2007.
  15. US NRC Regulatory Guide 1.60, Design Response Spectra for Seismic Design of Nuclear Power Plants, 1973.
  16. Javier Malvar and C. Allen Ross, Review of Strain Rate Effects for Concrete in Tension, ACI Materials Journal, V. 95, No. 6, November-December, 1998.
  17. KAERI/CM-1033/2007, 가동 중 원전 내 주요 안전설비의 경년열화 손상특성 조사 2008.03.07