References
- Marques, S. C., Oliveira, C. R., Outeiro, T. F. and Pereira, C. M. (2010) Alzheimer's disease: the quest to understand complexity. J. Alzheimers. Dis. 21, 373-383. https://doi.org/10.3233/JAD-2010-100303
- Chouliaras, L., Rutten, B. P., Kenis, G., Peerbooms, O., Visser, P. J., Verhey, F., van Os, J., Steinbusch, H. W. and van den Hove, D. L. (2010) Epigenetic regulation in the pathophysiology of Alzheimer's disease. Prog. Neurobiol. 90, 498-510. https://doi.org/10.1016/j.pneurobio.2010.01.002
- Suzuki, M. M. and Bird, A. (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465-476.
- Tohgi, H., Utsugisawa, K., Nagane, Y., Yoshimura, M., Genda, Y. and Ukitsu, M. (1999) Reduction with age in methylcytosine in the promoter region -224 approximately -101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res. Mol. Brain Res. 70, 288-292. https://doi.org/10.1016/S0169-328X(99)00163-1
- West, R. L., Lee, J. M. and Maroun, L. E. (1995) Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer’s disease patient. J. Mol. Neurosci. 6, 141-146. https://doi.org/10.1007/BF02736773
- Wang, S. C., Oelze, B. and Schumacher, A. (2008) Agespecific epigenetic drift in late onset Alzheimer’s disease. PLoS ONE 3, e2698. https://doi.org/10.1371/journal.pone.0002698
- Poulsen, P., Esteller, M., Vaag, A. and Fraga, M. F. (2007) The epigenetic basis of twin discordance in age-related diseases. Pediatr. Res. 61, 38R-42R. https://doi.org/10.1203/pdr.0b013e31803c7b98
- Mastroeni, D., McKee, A., Rogers, J. and Coleman, P. D. (2009) Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer's disease. PLoS One 4, e6617. https://doi.org/10.1371/journal.pone.0006617
- Silva, P. N., Gigek, C. O., Leal, M. F., Bertolucci, P. H., de Labio, R. W., Payao, S. L. and Smith Mde, A. (2008) Promoter methylation analysis of SIRT3, SMARCA5, HTERT and CDH1 genes in aging and Alzheimer's disease. J. Alzheimers. Dis. 13, 173-176. https://doi.org/10.3233/JAD-2008-13207
- Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., Cooper, N. R., Eikelenboom, P., Emmerling, M., Fiebich, B. L., Finch, C. E., Frautschy, S., Griffin, W. S., Hampel, H., Hull, M., Landreth, G., Lue, L., Mrak, R., Mackenzie, I. R., McGeer, P. L., O'Banion, M. K., Pachter J, Pasinetti, G., Plata-Salaman, C., Rogers, J., Rydel, R., Shen, Y., Streit, W., Strohmeyer, R., Tooyoma, I., Van Muiswinkel, F. L., Veerhuis, R., Walker, D., Webster, S., Wegrzyniak, B., Wenk, G. and Wyss-Coray, T. (2000) Inflammation and Alzheimer’s disease. Neurobiol. Aging 21, 383-421. https://doi.org/10.1016/S0197-4580(00)00124-X
- Bannister, A. J., Schneider, R. and Kouzarides, T. (2002) Histone methylation: dynamic or static? Cell 109, 801-806. https://doi.org/10.1016/S0092-8674(02)00798-5
- Felsenfeld, G., and Groudine, M. (2003) Controlling the double helix. Nature 421, 448-453. https://doi.org/10.1038/nature01411
- Hake, S. B., Xiao, A. and Allis, C. D. (2004) Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br. J. Cancer 90, 761-769. https://doi.org/10.1038/sj.bjc.6601575
- Jenuwein, T. and Allis, C. D. (2001) Translating the histone code. Science 293, 1074-1080. https://doi.org/10.1126/science.1063127
- Sadri-Vakili, G. and Cha, J. H. (2006) Mechanisms of disease: histone modifications in Huntington’s disease. Nat. Clin. Pract. Neurol. 2, 330-338. https://doi.org/10.1038/ncpneuro0199
- Mattson, M. P. and Sherman, M. (2003) Perturbed signal transduction in neurodegenerative disorders involving aberrant protein aggregation. Neuromolecular. Med. 4, 109-132. https://doi.org/10.1385/NMM:4:1-2:109
- Robakis, N. K. (2003) An Alzheimer's disease hypothesis based on transcriptional dysregulation. Amyloid. 10, 80-85. https://doi.org/10.3109/13506120309041729
- Kilgore, M., Miller, C. A., Fass, D. M., Hennig, K. M., Haggarty, S. J., Sweatt, J. D. and Rumbaugh, G. (2010) Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology 35, 870-880. https://doi.org/10.1038/npp.2009.197
- Ogawa, O., Zhu, X., Lee, H. G., Raina, A., Obrenovich, M. E., Bowser, R., Ghanbari, H. A., Castellani, R. J., Perry, G. and Smith, M. A. (2003) Ectopic localization of phosphorylated histone H3 in Alzheimer's disease: a mitotic catastrophe? Acta. Neuropathol. 105, 524-528.
-
Alarcon, J. M., Malleret, G., Touzani, K., Vronskaya, S., Ishii, S., Kandel, E. R. and Barco, A. (2004) Chromatin acetylation, memory, and LTP are impaired in
$CBP^{+/-}$ mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42, 947-959. https://doi.org/10.1016/j.neuron.2004.05.021 - Korzus, E., Rosenfeld, M. G. and Mayford, M. (2004) CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42, 961-972. https://doi.org/10.1016/j.neuron.2004.06.002
- Oliveira, A. M., Wood, M. A., McDonough, C. B. and Abel, T. (2007) Transgenic mice expressing an inhibitory truncated form of p300 exhibit long-term memory deficits. Learn. Mem. 14, 564-572. https://doi.org/10.1101/lm.656907
- Strahl, B. D. and Allis, C. D. (2000) The language of covalent histone modifications. Nature 403, 41-45. https://doi.org/10.1038/47412
- Hake, S. B. and Allis, C. D. (2006) Histone H3 variants and their potential role in indexing mammalian genomes: the ‘H3 barcode hypothesis’. Proc. Natl. Acad. Sci. U.S.A. 103, 6428-6435. https://doi.org/10.1073/pnas.0600803103
- Papp, B. and Muller, J. (2006) Histone trimethylation and the maintainence of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev. 20, 2041-2054. https://doi.org/10.1101/gad.388706
- Ferrante, R. J., Kubilus, J. K., Lee, J., Ryu, H., Beesen, A., Zucker, B., Smith, K., Kowall, N. W., Ratan, R. R., Luthi- Carter, R. and Hersch, S. M. (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J. Neurosci. 23, 9418-9427.
- Gardian, G., Browne, S. E., Choi, D. K., Klivenyi, P., Gregorio, J., Kubilus, J. K., Ryu, H., Langley, B., Ratan, R. R., Ferrante, R. J. and Beal, M. F. (2005) Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J. Biol. Chem. 280, 556-563. https://doi.org/10.1074/jbc.M410210200
- McCampbell, A., Taye, A. A., Whitty, L., Penney, E., Steffan, J. S. and Fischbeck, K. H. (2001) Histone deacetylase inhibitors reduce polyglutamine toxicity. Proc. Natl Acad. Sci. U.S.A. 98, 15179-15184. https://doi.org/10.1073/pnas.261400698
- Ryu, H., Smith, K., Camelo, S. I., Carreras, I., Lee, J., Iglesias, A. H., Dangond, F., Cormier, K. A., Cudkowicz, M. E., Brown, R. H. Jr. and Ferrante, R. J. (2005) Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J. Neurochem. 93, 1087-1098. https://doi.org/10.1111/j.1471-4159.2005.03077.x
- Steffan, J. S., Bodai, L., Pallos, J., Poelman, M., McCampbell, A., Apostol, B. L., Kazantsev, A., Schmidt, E., Zhu, Y. Z., Greenwald, M., Kurokawa, R., Housman, D. E., Jackson, G. R., Marsh, J. L. and Thompson, L. M. (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413, 739-743. https://doi.org/10.1038/35099568
- Hockly, E., Richon, M. V., Woodman, B., Smith, D. L., Zhou, X., Rosa, E., Sathasivam, K, Ghazi-Noori, S., Mahal, A., Lowden, P. A., Steffan, J. S., Marsh, J. L., Thompson, L. M., Lewis, C. M., Marks, P. A. and Bates, G. P. (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc. Natl. Acad. Sci. U.S.A. 100, 2041-2046. https://doi.org/10.1073/pnas.0437870100
- Hahnen, E., Hauke, J., Trankle, C., Eyupoglu, I. Y., Wirth, B. and Blumcke, I. (2008) Histone deacetylase inhibitors: possible implications for neurodegenerative disorders. Expert. Opin. Investig. Drugs. 17, 169-184. https://doi.org/10.1517/13543784.17.2.169
- Guan, J. S., Haggarty, S. J., Giacometti, E., Dannenberg, J. H., Joseph, N., Gao, J., Nieland, T. J., Zhou, Y., Wang, X., Mazitschek, R., Bradner, J. E., DePinho, R. A., Jaenisch, R. and Tsai, L. H. (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 7, 55-60.
- Julien, C., Tremblay, C., Emond, V., Lebbadi, M., Salem, N. Jr., Bennett, D. A. and Calon, F. (2009) Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J. Neuropathol. Exp. Neurol. 68, 48-58. https://doi.org/10.1097/NEN.0b013e3181922348
- Donmez, G., Wang, D., Cohen, D. E. and Guarente, L. (2010) SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 142, 320-332. https://doi.org/10.1016/j.cell.2010.06.020
- Wolfe, M. S. and Selkoe, D. J. (2010) Giving Alzheimer's the old one-two. Cell 142, 194-196. https://doi.org/10.1016/j.cell.2010.07.006
- Albani, D., Polito, L. and Forlon, I. G. (2010) Sirtuins as novel targets for Alzheimer's disease and other neurodegenerative disorders: experimental and genetic evidence. J. Alzheimers. Dis. 19, 11-26. https://doi.org/10.3233/JAD-2010-1215
- De Oliveira, R. M., Pais, T. F. and Outeiro, T. F. (2010) Sirtuins: common targets in aging and in neurodegeneration. Curr. Drug. Targets. 11, 1270-1280. https://doi.org/10.2174/1389450111007011270
- Green, K. N., Steffan, J. S., Martinez-Coria, H., Sun, X., Schreiber, S. S., Thompson, L. M. and LaFerla, F. M. (2008) Nicotinamide restores cognition in Alzheimer's disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J. Neurosci. 28, 11500-11510. https://doi.org/10.1523/JNEUROSCI.3203-08.2008
- Luo, J., Nikolaev, A. Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L. and Gu, W. (2001) Negative control of p53 by Sir2 alphapromotes cell survival under stress. Cell 107, 137-148. https://doi.org/10.1016/S0092-8674(01)00524-4
- Karuppagounder, S. S., Pinto, J. T., Xu, H., Chen, H. L., Beal, M. F. and Gibson, G. E. (2009) Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem. Int. 54, 111-118. https://doi.org/10.1016/j.neuint.2008.10.008
- Markus, M. A. and Morris, B. J. (2008) Resveratrol in prevention and treatment of common clinical conditions of aging. Clin. Interv. Aging. 3, 331-339.
- Ryan, K. A. and Pimplikar, S. W. (2005). Activation of GSK-3 and phosphorylation of CRMP2 in transgenic mice expressing APP intracellular domain. J. Cell Biol. 171, 327-335. https://doi.org/10.1083/jcb.200505078
- Munoz, D. G., Wang, D. and Greenberg, B. D. (1993) Hirano bodies accumulate C-terminal sequences of beta- amyloid precursor protein (beta-APP) epitopes. J. Neuropathol. Exp. Neurol. 52, 14-21. https://doi.org/10.1097/00005072-199301000-00003
- Artavanis-Tsakonas, S., Rand, M. D. and Lake, R. J. (1999) Notch signaling: cell fate control and signal integration in development. Science 284, 770-776. https://doi.org/10.1126/science.284.5415.770
- McLoughlin, D. M. and Miller, C. C. (1996) The intracellular cytoplasmic domain of the Alzheimer’s disease amyloid precursor protein interacts with phosphotyrosine-binding domain proteins in the yeast two-hybrid system. FEBS Lett. 397, 197-200. https://doi.org/10.1016/S0014-5793(96)01128-3
- Cao, X. and Sudhof, T. C. (2001) A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115-120. https://doi.org/10.1126/science.1058783
- Baek, S. H., Ohgi, K. A., Rose, D. W., Koo, E. H., Glass, C. K. and Rosenfeld, M. G. (2002) Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappa B and beta-amyloid precursor protein. Cell 110, 55-67. https://doi.org/10.1016/S0092-8674(02)00809-7
- Siegmund, K. D., Connor, C. M., Campan, M., Long, T. I., Weisenberger, D. J., Biniszkiewicz, D., Jaenisch, R., Laird, P. W. and Akbarian, S. (2007) DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2, e895. https://doi.org/10.1371/journal.pone.0000895
- Abdolmaleky, H. M., Smith, C. L., Faraone, S. V., Shafa, R., Stone, W., Glatt, S. J. and Tsuang, M. T. (2004) Methylomics in psychiatry: modulation of gene-environment interactions may be through DNA methylation. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 127B, 51-59. https://doi.org/10.1002/ajmg.b.20142
- Ryu, H., Lee, J., Hagerty, S. W., Soh, B. Y., McAlpin, S. E., Cormier, K. A., Smith, K, M. and Ferrante, R. J. (2006) ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington's disease. Proc. Natl. Acad. Sci. U.S.A. 103, 19176-19181. https://doi.org/10.1073/pnas.0606373103
Cited by
- Understanding the pathogenesis of endometriosis through proteomics: Recent advances and future prospects vol.8, pp.1-2, 2014, https://doi.org/10.1002/prca.201200082
- Alzheimer's disease and epigenetic diet vol.78, 2014, https://doi.org/10.1016/j.neuint.2014.09.012
- Systematic identification of differential gene network to elucidate Alzheimer's disease vol.85, 2017, https://doi.org/10.1016/j.eswa.2017.05.042
- Inverse relationship between Alzheimer’s disease and cancer, and other factors contributing to Alzheimer’s disease: a systematic review vol.16, pp.1, 2016, https://doi.org/10.1186/s12883-016-0765-2
- Epigenetic modifications of chronic hypoxia-mediated neurodegeneration in Alzheimer’s disease vol.3, pp.1, 2014, https://doi.org/10.1186/2047-9158-3-7
- Advances in Epigenetics and Epigenomics for Neurodegenerative Diseases vol.11, pp.5, 2011, https://doi.org/10.1007/s11910-011-0210-2
- Epigenetic treatment of neurological disease vol.3, pp.4, 2011, https://doi.org/10.2217/epi.11.67
- New ribosomes for new memories? vol.8, pp.2, 2015, https://doi.org/10.1080/19420889.2015.1017163
- Pathological and immunohistochemical study of lethal primary brain stem injuries vol.7, pp.1, 2012, https://doi.org/10.1186/1746-1596-7-54
- Amyloid Beta-Mediated Hypomethylation of Heme Oxygenase 1 Correlates with Cognitive Impairment in Alzheimer’s Disease vol.11, pp.4, 2016, https://doi.org/10.1371/journal.pone.0153156
- Disruption of neocortical histone H3 homeostasis by soluble Aβ: implications for Alzheimer's disease vol.34, pp.9, 2013, https://doi.org/10.1016/j.neurobiolaging.2012.12.028
- Epigenetic control of somatostatin and cortistatin expression by β amyloid peptide vol.90, pp.1, 2012, https://doi.org/10.1002/jnr.22731
- Body fluid identification in forensics vol.45, pp.10, 2012, https://doi.org/10.5483/BMBRep.2012.45.10.206
- The MethDet: a technology for biomarker development vol.11, pp.8, 2011, https://doi.org/10.1586/erm.11.74
- Epigenetic programming of neurodegenerative diseases by an adverse environment vol.1444, 2012, https://doi.org/10.1016/j.brainres.2012.01.038
- Multifunctional Ebselen drug functions through the activation of DNA damage response and alterations in nuclear proteins vol.83, pp.2, 2012, https://doi.org/10.1016/j.bcp.2011.10.011
- S-adenosylmethionine reduces the progress of the Alzheimer-like features induced by B-vitamin deficiency in mice vol.33, pp.7, 2012, https://doi.org/10.1016/j.neurobiolaging.2011.12.013
- Histone Deacetylases Enzyme, Copper, and IL-8 Levels in Patients With Alzheimer’s Disease vol.28, pp.1, 2013, https://doi.org/10.1177/1533317512467680
- SIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer's disease vol.17, pp.1, 2018, https://doi.org/10.1111/acel.12679