DOI QR코드

DOI QR Code

Epigenetic modification is linked to Alzheimer's disease: is it a maker or a marker?

  • Lee, Jung-Hee (Department of Neurology, Boston University School of Medicine) ;
  • Ryu, Hoon (Department of Neurology, Boston University School of Medicine)
  • Accepted : 2010.09.28
  • Published : 2010.10.31

Abstract

Alzheimer's disease (AD) is the most common age-dependent neurodegenerative disorder and shows progressive memory loss and cognitive decline. Intraneuronal filaments composed of aggregated hyperphosphorylated tau protein, called neurofibrillary tangles, along with extracellular accumulations of amyloid $\beta$ protein (A$\beta$), called senile plaques, are known to be the neuropathological hallmarks of AD. In light of recent studies, epigenetic modification has emerged as one of the pathogenic mechanisms of AD. Epigenetic changes encompass an array of molecular modifications to both DNA and chromatin, including transcription factors and cofactors. In this review, we summarize how DNA methylation and changes to DNA chromatin packaging by post-translational histone modification are involved in AD. In addition, we describe the role of SIRTs, histone deacetylases, and the effect of SIRT-modulating drugs on AD. Lastly, we discuss how amyloid precursor protein (APP) intracellular domain (AICD) regulates neuronal transcription. Our understanding of the epigenomes and transcriptomes of AD may warrant future identification of novel biological markers and beneficial therapeutic targets for AD.

Keywords

References

  1. Marques, S. C., Oliveira, C. R., Outeiro, T. F. and Pereira, C. M. (2010) Alzheimer's disease: the quest to understand complexity. J. Alzheimers. Dis. 21, 373-383. https://doi.org/10.3233/JAD-2010-100303
  2. Chouliaras, L., Rutten, B. P., Kenis, G., Peerbooms, O., Visser, P. J., Verhey, F., van Os, J., Steinbusch, H. W. and van den Hove, D. L. (2010) Epigenetic regulation in the pathophysiology of Alzheimer's disease. Prog. Neurobiol. 90, 498-510. https://doi.org/10.1016/j.pneurobio.2010.01.002
  3. Suzuki, M. M. and Bird, A. (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465-476.
  4. Tohgi, H., Utsugisawa, K., Nagane, Y., Yoshimura, M., Genda, Y. and Ukitsu, M. (1999) Reduction with age in methylcytosine in the promoter region -224 approximately -101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res. Mol. Brain Res. 70, 288-292. https://doi.org/10.1016/S0169-328X(99)00163-1
  5. West, R. L., Lee, J. M. and Maroun, L. E. (1995) Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer’s disease patient. J. Mol. Neurosci. 6, 141-146. https://doi.org/10.1007/BF02736773
  6. Wang, S. C., Oelze, B. and Schumacher, A. (2008) Agespecific epigenetic drift in late onset Alzheimer’s disease. PLoS ONE 3, e2698. https://doi.org/10.1371/journal.pone.0002698
  7. Poulsen, P., Esteller, M., Vaag, A. and Fraga, M. F. (2007) The epigenetic basis of twin discordance in age-related diseases. Pediatr. Res. 61, 38R-42R. https://doi.org/10.1203/pdr.0b013e31803c7b98
  8. Mastroeni, D., McKee, A., Rogers, J. and Coleman, P. D. (2009) Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer's disease. PLoS One 4, e6617. https://doi.org/10.1371/journal.pone.0006617
  9. Silva, P. N., Gigek, C. O., Leal, M. F., Bertolucci, P. H., de Labio, R. W., Payao, S. L. and Smith Mde, A. (2008) Promoter methylation analysis of SIRT3, SMARCA5, HTERT and CDH1 genes in aging and Alzheimer's disease. J. Alzheimers. Dis. 13, 173-176. https://doi.org/10.3233/JAD-2008-13207
  10. Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., Cooper, N. R., Eikelenboom, P., Emmerling, M., Fiebich, B. L., Finch, C. E., Frautschy, S., Griffin, W. S., Hampel, H., Hull, M., Landreth, G., Lue, L., Mrak, R., Mackenzie, I. R., McGeer, P. L., O'Banion, M. K., Pachter J, Pasinetti, G., Plata-Salaman, C., Rogers, J., Rydel, R., Shen, Y., Streit, W., Strohmeyer, R., Tooyoma, I., Van Muiswinkel, F. L., Veerhuis, R., Walker, D., Webster, S., Wegrzyniak, B., Wenk, G. and Wyss-Coray, T. (2000) Inflammation and Alzheimer’s disease. Neurobiol. Aging 21, 383-421. https://doi.org/10.1016/S0197-4580(00)00124-X
  11. Bannister, A. J., Schneider, R. and Kouzarides, T. (2002) Histone methylation: dynamic or static? Cell 109, 801-806. https://doi.org/10.1016/S0092-8674(02)00798-5
  12. Felsenfeld, G., and Groudine, M. (2003) Controlling the double helix. Nature 421, 448-453. https://doi.org/10.1038/nature01411
  13. Hake, S. B., Xiao, A. and Allis, C. D. (2004) Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br. J. Cancer 90, 761-769. https://doi.org/10.1038/sj.bjc.6601575
  14. Jenuwein, T. and Allis, C. D. (2001) Translating the histone code. Science 293, 1074-1080. https://doi.org/10.1126/science.1063127
  15. Sadri-Vakili, G. and Cha, J. H. (2006) Mechanisms of disease: histone modifications in Huntington’s disease. Nat. Clin. Pract. Neurol. 2, 330-338. https://doi.org/10.1038/ncpneuro0199
  16. Mattson, M. P. and Sherman, M. (2003) Perturbed signal transduction in neurodegenerative disorders involving aberrant protein aggregation. Neuromolecular. Med. 4, 109-132. https://doi.org/10.1385/NMM:4:1-2:109
  17. Robakis, N. K. (2003) An Alzheimer's disease hypothesis based on transcriptional dysregulation. Amyloid. 10, 80-85. https://doi.org/10.3109/13506120309041729
  18. Kilgore, M., Miller, C. A., Fass, D. M., Hennig, K. M., Haggarty, S. J., Sweatt, J. D. and Rumbaugh, G. (2010) Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology 35, 870-880. https://doi.org/10.1038/npp.2009.197
  19. Ogawa, O., Zhu, X., Lee, H. G., Raina, A., Obrenovich, M. E., Bowser, R., Ghanbari, H. A., Castellani, R. J., Perry, G. and Smith, M. A. (2003) Ectopic localization of phosphorylated histone H3 in Alzheimer's disease: a mitotic catastrophe? Acta. Neuropathol. 105, 524-528.
  20. Alarcon, J. M., Malleret, G., Touzani, K., Vronskaya, S., Ishii, S., Kandel, E. R. and Barco, A. (2004) Chromatin acetylation, memory, and LTP are impaired in $CBP^{+/-}$ mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42, 947-959. https://doi.org/10.1016/j.neuron.2004.05.021
  21. Korzus, E., Rosenfeld, M. G. and Mayford, M. (2004) CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42, 961-972. https://doi.org/10.1016/j.neuron.2004.06.002
  22. Oliveira, A. M., Wood, M. A., McDonough, C. B. and Abel, T. (2007) Transgenic mice expressing an inhibitory truncated form of p300 exhibit long-term memory deficits. Learn. Mem. 14, 564-572. https://doi.org/10.1101/lm.656907
  23. Strahl, B. D. and Allis, C. D. (2000) The language of covalent histone modifications. Nature 403, 41-45. https://doi.org/10.1038/47412
  24. Hake, S. B. and Allis, C. D. (2006) Histone H3 variants and their potential role in indexing mammalian genomes: the ‘H3 barcode hypothesis’. Proc. Natl. Acad. Sci. U.S.A. 103, 6428-6435. https://doi.org/10.1073/pnas.0600803103
  25. Papp, B. and Muller, J. (2006) Histone trimethylation and the maintainence of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev. 20, 2041-2054. https://doi.org/10.1101/gad.388706
  26. Ferrante, R. J., Kubilus, J. K., Lee, J., Ryu, H., Beesen, A., Zucker, B., Smith, K., Kowall, N. W., Ratan, R. R., Luthi- Carter, R. and Hersch, S. M. (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J. Neurosci. 23, 9418-9427.
  27. Gardian, G., Browne, S. E., Choi, D. K., Klivenyi, P., Gregorio, J., Kubilus, J. K., Ryu, H., Langley, B., Ratan, R. R., Ferrante, R. J. and Beal, M. F. (2005) Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J. Biol. Chem. 280, 556-563. https://doi.org/10.1074/jbc.M410210200
  28. McCampbell, A., Taye, A. A., Whitty, L., Penney, E., Steffan, J. S. and Fischbeck, K. H. (2001) Histone deacetylase inhibitors reduce polyglutamine toxicity. Proc. Natl Acad. Sci. U.S.A. 98, 15179-15184. https://doi.org/10.1073/pnas.261400698
  29. Ryu, H., Smith, K., Camelo, S. I., Carreras, I., Lee, J., Iglesias, A. H., Dangond, F., Cormier, K. A., Cudkowicz, M. E., Brown, R. H. Jr. and Ferrante, R. J. (2005) Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J. Neurochem. 93, 1087-1098. https://doi.org/10.1111/j.1471-4159.2005.03077.x
  30. Steffan, J. S., Bodai, L., Pallos, J., Poelman, M., McCampbell, A., Apostol, B. L., Kazantsev, A., Schmidt, E., Zhu, Y. Z., Greenwald, M., Kurokawa, R., Housman, D. E., Jackson, G. R., Marsh, J. L. and Thompson, L. M. (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413, 739-743. https://doi.org/10.1038/35099568
  31. Hockly, E., Richon, M. V., Woodman, B., Smith, D. L., Zhou, X., Rosa, E., Sathasivam, K, Ghazi-Noori, S., Mahal, A., Lowden, P. A., Steffan, J. S., Marsh, J. L., Thompson, L. M., Lewis, C. M., Marks, P. A. and Bates, G. P. (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc. Natl. Acad. Sci. U.S.A. 100, 2041-2046. https://doi.org/10.1073/pnas.0437870100
  32. Hahnen, E., Hauke, J., Trankle, C., Eyupoglu, I. Y., Wirth, B. and Blumcke, I. (2008) Histone deacetylase inhibitors: possible implications for neurodegenerative disorders. Expert. Opin. Investig. Drugs. 17, 169-184. https://doi.org/10.1517/13543784.17.2.169
  33. Guan, J. S., Haggarty, S. J., Giacometti, E., Dannenberg, J. H., Joseph, N., Gao, J., Nieland, T. J., Zhou, Y., Wang, X., Mazitschek, R., Bradner, J. E., DePinho, R. A., Jaenisch, R. and Tsai, L. H. (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 7, 55-60.
  34. Julien, C., Tremblay, C., Emond, V., Lebbadi, M., Salem, N. Jr., Bennett, D. A. and Calon, F. (2009) Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J. Neuropathol. Exp. Neurol. 68, 48-58. https://doi.org/10.1097/NEN.0b013e3181922348
  35. Donmez, G., Wang, D., Cohen, D. E. and Guarente, L. (2010) SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 142, 320-332. https://doi.org/10.1016/j.cell.2010.06.020
  36. Wolfe, M. S. and Selkoe, D. J. (2010) Giving Alzheimer's the old one-two. Cell 142, 194-196. https://doi.org/10.1016/j.cell.2010.07.006
  37. Albani, D., Polito, L. and Forlon, I. G. (2010) Sirtuins as novel targets for Alzheimer's disease and other neurodegenerative disorders: experimental and genetic evidence. J. Alzheimers. Dis. 19, 11-26. https://doi.org/10.3233/JAD-2010-1215
  38. De Oliveira, R. M., Pais, T. F. and Outeiro, T. F. (2010) Sirtuins: common targets in aging and in neurodegeneration. Curr. Drug. Targets. 11, 1270-1280. https://doi.org/10.2174/1389450111007011270
  39. Green, K. N., Steffan, J. S., Martinez-Coria, H., Sun, X., Schreiber, S. S., Thompson, L. M. and LaFerla, F. M. (2008) Nicotinamide restores cognition in Alzheimer's disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J. Neurosci. 28, 11500-11510. https://doi.org/10.1523/JNEUROSCI.3203-08.2008
  40. Luo, J., Nikolaev, A. Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L. and Gu, W. (2001) Negative control of p53 by Sir2 alphapromotes cell survival under stress. Cell 107, 137-148. https://doi.org/10.1016/S0092-8674(01)00524-4
  41. Karuppagounder, S. S., Pinto, J. T., Xu, H., Chen, H. L., Beal, M. F. and Gibson, G. E. (2009) Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem. Int. 54, 111-118. https://doi.org/10.1016/j.neuint.2008.10.008
  42. Markus, M. A. and Morris, B. J. (2008) Resveratrol in prevention and treatment of common clinical conditions of aging. Clin. Interv. Aging. 3, 331-339.
  43. Ryan, K. A. and Pimplikar, S. W. (2005). Activation of GSK-3 and phosphorylation of CRMP2 in transgenic mice expressing APP intracellular domain. J. Cell Biol. 171, 327-335. https://doi.org/10.1083/jcb.200505078
  44. Munoz, D. G., Wang, D. and Greenberg, B. D. (1993) Hirano bodies accumulate C-terminal sequences of beta- amyloid precursor protein (beta-APP) epitopes. J. Neuropathol. Exp. Neurol. 52, 14-21. https://doi.org/10.1097/00005072-199301000-00003
  45. Artavanis-Tsakonas, S., Rand, M. D. and Lake, R. J. (1999) Notch signaling: cell fate control and signal integration in development. Science 284, 770-776. https://doi.org/10.1126/science.284.5415.770
  46. McLoughlin, D. M. and Miller, C. C. (1996) The intracellular cytoplasmic domain of the Alzheimer’s disease amyloid precursor protein interacts with phosphotyrosine-binding domain proteins in the yeast two-hybrid system. FEBS Lett. 397, 197-200. https://doi.org/10.1016/S0014-5793(96)01128-3
  47. Cao, X. and Sudhof, T. C. (2001) A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115-120. https://doi.org/10.1126/science.1058783
  48. Baek, S. H., Ohgi, K. A., Rose, D. W., Koo, E. H., Glass, C. K. and Rosenfeld, M. G. (2002) Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappa B and beta-amyloid precursor protein. Cell 110, 55-67. https://doi.org/10.1016/S0092-8674(02)00809-7
  49. Siegmund, K. D., Connor, C. M., Campan, M., Long, T. I., Weisenberger, D. J., Biniszkiewicz, D., Jaenisch, R., Laird, P. W. and Akbarian, S. (2007) DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2, e895. https://doi.org/10.1371/journal.pone.0000895
  50. Abdolmaleky, H. M., Smith, C. L., Faraone, S. V., Shafa, R., Stone, W., Glatt, S. J. and Tsuang, M. T. (2004) Methylomics in psychiatry: modulation of gene-environment interactions may be through DNA methylation. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 127B, 51-59. https://doi.org/10.1002/ajmg.b.20142
  51. Ryu, H., Lee, J., Hagerty, S. W., Soh, B. Y., McAlpin, S. E., Cormier, K. A., Smith, K, M. and Ferrante, R. J. (2006) ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington's disease. Proc. Natl. Acad. Sci. U.S.A. 103, 19176-19181. https://doi.org/10.1073/pnas.0606373103

Cited by

  1. Understanding the pathogenesis of endometriosis through proteomics: Recent advances and future prospects vol.8, pp.1-2, 2014, https://doi.org/10.1002/prca.201200082
  2. Alzheimer's disease and epigenetic diet vol.78, 2014, https://doi.org/10.1016/j.neuint.2014.09.012
  3. Systematic identification of differential gene network to elucidate Alzheimer's disease vol.85, 2017, https://doi.org/10.1016/j.eswa.2017.05.042
  4. Inverse relationship between Alzheimer’s disease and cancer, and other factors contributing to Alzheimer’s disease: a systematic review vol.16, pp.1, 2016, https://doi.org/10.1186/s12883-016-0765-2
  5. Epigenetic modifications of chronic hypoxia-mediated neurodegeneration in Alzheimer’s disease vol.3, pp.1, 2014, https://doi.org/10.1186/2047-9158-3-7
  6. Advances in Epigenetics and Epigenomics for Neurodegenerative Diseases vol.11, pp.5, 2011, https://doi.org/10.1007/s11910-011-0210-2
  7. Epigenetic treatment of neurological disease vol.3, pp.4, 2011, https://doi.org/10.2217/epi.11.67
  8. New ribosomes for new memories? vol.8, pp.2, 2015, https://doi.org/10.1080/19420889.2015.1017163
  9. Pathological and immunohistochemical study of lethal primary brain stem injuries vol.7, pp.1, 2012, https://doi.org/10.1186/1746-1596-7-54
  10. Amyloid Beta-Mediated Hypomethylation of Heme Oxygenase 1 Correlates with Cognitive Impairment in Alzheimer’s Disease vol.11, pp.4, 2016, https://doi.org/10.1371/journal.pone.0153156
  11. Disruption of neocortical histone H3 homeostasis by soluble Aβ: implications for Alzheimer's disease vol.34, pp.9, 2013, https://doi.org/10.1016/j.neurobiolaging.2012.12.028
  12. Epigenetic control of somatostatin and cortistatin expression by β amyloid peptide vol.90, pp.1, 2012, https://doi.org/10.1002/jnr.22731
  13. Body fluid identification in forensics vol.45, pp.10, 2012, https://doi.org/10.5483/BMBRep.2012.45.10.206
  14. The MethDet: a technology for biomarker development vol.11, pp.8, 2011, https://doi.org/10.1586/erm.11.74
  15. Epigenetic programming of neurodegenerative diseases by an adverse environment vol.1444, 2012, https://doi.org/10.1016/j.brainres.2012.01.038
  16. Multifunctional Ebselen drug functions through the activation of DNA damage response and alterations in nuclear proteins vol.83, pp.2, 2012, https://doi.org/10.1016/j.bcp.2011.10.011
  17. S-adenosylmethionine reduces the progress of the Alzheimer-like features induced by B-vitamin deficiency in mice vol.33, pp.7, 2012, https://doi.org/10.1016/j.neurobiolaging.2011.12.013
  18. Histone Deacetylases Enzyme, Copper, and IL-8 Levels in Patients With Alzheimer’s Disease vol.28, pp.1, 2013, https://doi.org/10.1177/1533317512467680
  19. SIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer's disease vol.17, pp.1, 2018, https://doi.org/10.1111/acel.12679