Abstract
The numbers of SCI paper or patent in science and technology are expected to be related with the number of researcher and knowledge stock (R&D stock, paper stock, patent stock). The results of the regression model showed that severe multicollinearity existed and errors were made in the estimation and testing of regression coefficients. To solve the problem of multicollinearity and estimate the effect of the independent variable properly, principal component regression model were applied for three cases with S&T knowledge production. The estimated principal component regression function was transformed into original independent variables to interpret properly its effect. The analysis indicated that the principal component regression model was useful to estimate the effect of the highly correlate production factors and showed that the number of researcher, R&D stock, paper or patent stock had all positive effect on the production of paper or patent.
과학기술 R&D 활동의 대표적 성과인 SCI 논문과 특허의 생산에 영향을 미치는 요인은 연구비, 연구원수, 지식스톡(R&D스톡, 논문스톡, 특허스톡 등), 연구환경, 개방화 정도, 인적자본, GDP 등 다양하다. 일반적인 회귀모형을 이용하여 논문 또는 특허의 생산에 영향을 미치는 요인을 추정하면 생산요인들 간에 다중공선성 문제가 발생하여 추정의 오류가 발생한다. 본 논문에서는 과학기술 지식생산에 영향을 미치는 요인들 간의 다중공선성 문제를 해결하기 위해 주성분 회귀모형을 이용하였다. SCI 논문을 산출로 가정한 과학생산성과와 특허를 산출로 가정한 기술생산성과에 영향을 미치는 요인을 회귀모형과 주성분 회귀모형을 이용하여 3가지 사례를 대상으로 비교 분석하였다. 일반 회귀모형을 이용하여 SCI 논문과 특허의 생산에 영향을 미치는 요인들을 분석한 결과, 요인들간에 다중공선성이 매우 높게 나타났고, 그 결과 회귀계수와 추정과 검정에 오류가 발생되었다. 반면 주성분 회귀모형을 이용하여 분석한 결과 다중공선성문제가 해결되어, 개별 생산요인에 대한 효과를 적절하게 추정할 수 있었다. 본 논문에서 제안한 주성분 회귀모형을 이용한 과학기술 지식생산함수 추정방법은 다중공선성이 강한 소수의 생산요소를 포함한 회귀분석에서 유용하게 적용될 수 있을 것이다.