DOI QR코드

DOI QR Code

Control Effects against Mosquitoes Larva of Bacillus thuringiensis subsp. israelensis CAB199 isolate according to Different Formulations

Bacillus thuringiensis subsp. israelensis CAB199균주의 제형에 따른 모기유충방제 효과

  • Seo, Mi-Ja (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Gil, Yeong-Jong (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kim, Tae-Hwan (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kim, Hyung-Joong (Korea Rural Community Corporation, Rural Research Institute) ;
  • Youn, Young-Nam (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Yu, Yong-Man (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
  • 서미자 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 길영종 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 김태환 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 김형중 (한국농어촌공사 농어촌연구원) ;
  • 윤영남 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 유용만 (충남대학교 농업생명과학대학 응용생물학과)
  • Received : 2010.05.24
  • Accepted : 2010.06.22
  • Published : 2010.06.30

Abstract

Among 18 Bacillus thuringiensis isolates with spherical parasporal inclusion from soils, B. thuringiensis subsp. israelensis CAB199 was selected. It was showing over 90% mortality against Aedes aegypti and Culex pipiens moletus. It was confirmed that this B. thuringiensis subsp. israelensis CAB199 isolate also had a insecticidal activity against Culex inatomii that was occurred in the marsh. Because most of mosquito larva were primarily situated or shifted from under- to surface water, we need to select long floating formulations on surface water for controlling mosquito larva. It was tested the pesticidal and control effects in the laboratory and wetland with two formulation types of B. thuringiensis subsp. israelensis, for example, wettable power (WP) and suspension concentrate type (SC). Laboratory test showed that SC formulation type was relatively faster and more effective against 3 tested mosquito species, C. pipiens, Aedes aegypti, and C. inatomii. Otherwise, the control efficacy of SC formulation type was more rapidly appeared against C. inatomii in the wetland.

토양에서 분리한 구형의 내독소단백질을 가지는 18개의 균주 중, 이집트숲모기와 지하집모기에 90%이상의 살충활성을 보이는 Bacillus thuringiensis subsp. israelensis CAB199 균주를 선발하였다. 이 균주는 습지에 발생한 이나도미집모기에도 높은 살충효과를 나타내었다. 모기유충의 행동패턴은 주로 호흡을 위해 수면에서 주로 활동하고 있어, Bti 균주를 유효성분으로 하는 제제가 수면 위에 장시간 부유 할 수 있는 제형을 선발하고자 하였다. 수화제와 액상수화제의 두 가지 형태의 제형을 만들어 실내에서의 살충효과 및 습지에서의 방제효과를 확인한 결과, 실내에서의 경우에는 액상수화제 제형이 실험한 3종의 모기유충에 대해 속효적이며 높은 살충율을 보여주었고, 습지에서도 이나도미집모기에 대하여 가장 좋은 활성을 나타내었다.

Keywords

References

  1. Arredondo-jimenez, J.I. and K.M. Valdez-Delgado. 2006. Effect of Novalurion (Rimon$^{\circledR}$ 10EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico. Med. Vecter. Entomol. 20: 377-387. https://doi.org/10.1111/j.1365-2915.2006.00656.x
  2. Beckage, N.E., K.M. Marion, W.E. Walton, M.C. Wirth and F.F. Tan. 2004. The comparative larvicidal toxicities of three ecdysone agonists on the mosquitoes, Aedes aegypti, Culex quinquefasciatus and Anopheles gambiae. Arch. Insect Biochem. Physiol. 57: 111-122. https://doi.org/10.1002/arch.20021
  3. Benintende, G.B., J.E. Lopez-Meza, J.G. Cozzi, C.F. Piccinetti and J.E. Ibarra. 2000. Characterization of INTA 51-3, a new atypical strain of Bacillus thuringiensis from Argentina. Curr. Microbiol. 41; 396-401. https://doi.org/10.1007/s002840010157
  4. Choi, S.Y., S.C. Oh, M.S. Cho, S.K. Paek, J.S. Kim, D.A. Kim, M.R. Gill, Y.N. Youn and Y.M. Yu. 2007. Bioassay of environment-friendly insecticides for management of mosquito, Cules pipiens molestus. Kor. J. Appl. Entomol. 46(2): 261-267. https://doi.org/10.5656/KSAE.2007.46.2.261
  5. Das, P.K. and D. Dominic Amalraj. 1997. Biological control of malaria vetors. Indian J. Med. Res. 106: 174-197.
  6. Dominic Amalraj, D., S.S. Sahu, P. Jambulingam, P.S. Boopathi Doss, M. Kalyanasundaram and P.K. Das. 2000. Efficacy of aqueous suspension and granular formulations of Bacillus thuringiensis (Vectobac) against mosquito vectors. Acta Tropica 75: 243-246. https://doi.org/10.1016/S0001-706X(00)00054-1
  7. Khetan, S.K. 2001. Microbial pest control. 300bp. Marcel Dekker, Inc. N.Y.
  8. Kil, M.R., D.A. Kim, S.K. Paek, J.S. Kim, S.Y. Choi, D.Y. Jin, Y.N. Youn, I.C. Hwang, M. Ohba, and Y.M. Yu. 2008. Characterization of Bacillus thuringiensis subsp. tohokuensis CAB167 isolate against mosquito larva. Kor. J. Appl. Entomol. 47(4): 457-465. https://doi.org/10.5656/KSAE.2008.47.4.457
  9. Kim, H.S., H.W. Park, D.W. Lee, Y.M. Yu, J.I. Kim and S.K. Kang. 1995. Distribution and characterization of Bacillus thuringiensis isolates from soil in Korea. Kor. J. Appl. Entomol. 34(4): 344-349.
  10. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680-685. https://doi.org/10.1038/227680a0
  11. Ree, H.I., K.I. Im, H.J. Shin and T.U. Kim. 1988. Study on autogeneous behaviour of Aedes togoi, the vector of Brugian filariasis in Korea. Yonsei Rep. Trop. Med., 19: 3-7.
  12. Yu, H.S., D.K. Lee, W.J. Lee and J.C. Shim, 1982. Mosquito control evaluation of Bacillus thuringiensis var. israelensis in the laboratory, simulated rice paddies, and confined field trials in marsh and sewage effluent in South Korea. J. Entomol. 12: 69-82.