DOI QR코드

DOI QR Code

Effect of Electron-beam Irradiation on Development and Reproduction of Bemisia tabaci, Myzus persicae, Plutella xylostella and Tetranychus urticae

전자빔 조사가 담배가루이, 복숭아혹진딧물, 배추좀나방과 점박이응애의 발육과 생식에 미치는 영향

  • Moon, Sang-Rae (Dept. of Plant Medicine, Coll. of Agric. Life and Environment Sciences, Chungbuk National University) ;
  • Son, Bong-Ki (Dept. of Plant Medicine, Coll. of Agric. Life and Environment Sciences, Chungbuk National University) ;
  • Yang, Jeong-Oh (Dept. of Plant Medicine, Coll. of Agric. Life and Environment Sciences, Chungbuk National University) ;
  • Woo, Jong-Suk (Environment-Friendly Agriculture Research Institute) ;
  • Yoon, Chang-Mann (Dept. of Plant Medicine, Coll. of Agric. Life and Environment Sciences, Chungbuk National University) ;
  • Kim, Gil-Hah (Dept. of Plant Medicine, Coll. of Agric. Life and Environment Sciences, Chungbuk National University)
  • 문상래 (충북대학교 농업생명환경대학 식물의학과) ;
  • 손봉기 (충북대학교 농업생명환경대학 식물의학과) ;
  • 양정오 (충북대학교 농업생명환경대학 식물의학과) ;
  • 우종석 (친환경농업연구원) ;
  • 윤창만 (충북대학교 농업생명환경대학 식물의학과) ;
  • 김길하 (충북대학교 농업생명환경대학 식물의학과)
  • Received : 2010.05.24
  • Accepted : 2010.06.18
  • Published : 2010.06.30

Abstract

Four major agricultural insect pests, Bemisia tabaci, Myzus persicae, Plutella xylostella and Tetranychus urticae, were irradiated with 30, 50, 70, or 100 Gy electron-beam. Longevity, egg hatching, emergence, and fecundity of the test insects were measured. Hatchability of B. tabaci, P. xylostella and T. urticae declined with increasing irradiation doses, and all B. tabaci and T. urticae eggs were dead at 100 Gy. When eggs of B. tabaci, P. xylostella and T. urticae were irradiated, hatch was inhibited. B. tabaci adults grown from 70 Gy irradiated eggs did not lay eggs. Fecundity of P. xylostella from the 100 Gy irradiated eggs decreased. When B. tabaci, P. xylostella, M. persicae and T. urticae nymphs/larvae were irradiated, the results were similar as those of the hatched eggs. When P. xylostella pupae were irradiated with 100 Gy, fecundity of emerged adults decreased and no eggs hatched. When B. tabaci, P. xylostella, M. persicae and T. urticae adults were irradiated with 70 and 100 Gy, fecundity decreased and egg hatch of B. tabaci was inhibited. However, the longevity of adults did not change and electron-beam irradiation of all developmental stages had no effect on the longevity of adults.

전자빔 조사(30, 50, 70, 100 Gy)가 주요 농업해충(담배가루이, 복숭아혹진딧물, 배추좀나방, 점박이응애)의 발육과 생식에 미치는 영향을 조사하였다. 담배가루이, 배추좀나방, 점박이응애 알의 부화는 조사량이 많아질수록 억제되었으며, 특히 담배가루이와 점박이응애 알은 10 0Gy 조사량에서 부화가 100%억제되었다. 그러나 약충/유충, 번데기, 담배가루이, 배추좀나방, 점박이응애의 알에 조사했을 때 부화유충의 우화억제에 영향을 미쳤다. 그리고 70 Gy 조사량에서 담배가루이 우화성충은 산란을 하지 않았고, 100 Gy 조사량에서 배추좀나방 우화성충의 산란수가 감소하였다. 담배가루이, 배추좀나방, 복숭아혹진딧물, 점박이응애 약충/유충에 조사했을 때 70과 100 Gy 조사량에서 부화유충에 미치는 영향과 비슷하였다. 배추좀나방 번데기에 조사했을 때 100 Gy에서 산란수가 감소하였고, 산란한 알이 100% 부화하지 못했다. 담배가루이, 배추좀나방, 복숭아혹진딧물, 점박이응애의 성충에 조사했을 때 70, 100 Gy에서 산란수/산자수가 감소하였으며, 산란한 알의 부화억제에도 영향을 미쳤다. 특히 담배가루이 알은 부화가 100%억제되었다. 그러나, 4종의 주요 농업해충의 모든 발육태에 조사하였을 때 성충수명에는 영향이 없었다.

Keywords

References

  1. Aldryhim, Y.N. and E.E. Adam. 1998. Use of radiation disinfestations in the control of Oryzaephilus surinamensis, a pest of stored dry dates. Saudi J. Bio. Sci. 5: 3-11.
  2. Aldryhim, Y.N. and E.E. Adam. 1999. Efficacy of gamma irradiation against Sitophilus granarius (L.) (Coleoptera: Curculionidae). J. Stored Prod. Res. 35: 225-232. https://doi.org/10.1016/S0022-474X(99)00007-7
  3. Aye, T.T., J.K. Shim, D.M. Ha, Y.J. Kwon, J.H. Kwon and K.Y. Lee. 2008. Effect of gamma irradiation on the development and reproduction of Plodia interpunctella (Hubner) (Lepidoptera: Pyralidae). J. Stored Prod. Res. 44: 77-81. https://doi.org/10.1016/j.jspr.2007.06.002
  4. Ayvaz, A. and A.S. Tuncbilek. 2006. Effect of gamma radiation on life stages of the Mediterranean flour moth, Ephestica kuehniella zeller (Lepidoptera: Pyralidae). J. Pest Sci. 79: 215-222. https://doi.org/10.1007/s10340-006-0137-6
  5. Benhalima, H., M.Q. Chaudhry, K.A. Mills and N.R. Price. 2004. Phophine resistance in stored product insects collected from various grain storage facilities in Morocco. J. Stored Prod. Res. 40: 241-249. https://doi.org/10.1016/S0022-474X(03)00012-2
  6. Benschoter, C.A. 1984. Low temperature storage as a quarantine treatment for the Caribbean fruit fly (Diptera: Tephritidae) in Florida citrus. J. Econ. Entomol. 77: 1233-1235. https://doi.org/10.1093/jee/77.5.1233
  7. Boshra, S.A. and A.A. Mikhaiel. 2006. Effect of gamma irradiation on pupal stage of Ephestia calidella (Guenee). J. Stored Prod. Res. 42: 457-467. https://doi.org/10.1016/j.jspr.2005.09.002
  8. Cleghorn, D.A., S.V. Nablo, D.N. Ferro and D.W. Hagstrum. 2002. Electron beam treatment parameters for control of stored product insects. Radiation Physics and Chem. 63: 575-579. https://doi.org/10.1016/S0969-806X(01)00596-5
  9. Ghanem, I. and M. Shamma. 2007. Effect of non ionizing radiation (UVC) on the development of Trogoderma granarium Everts. J. Stored Prod. Res. 43: 362-366. https://doi.org/10.1016/j.jspr.2006.09.002
  10. Gould, W.P. 1988. A hot water & cold storage quarantine treatment for grapefruit infested with the Caribbean fruit fly. Proc. Fla. State Hort. Soc. 110: 190-192.
  11. Hallman, G.J. 1998. Ionizing radiation quarantine treatments. An. Soc. Entomol. Brasil 27: 313-323. https://doi.org/10.1590/S0301-80591998000300001
  12. Han, D.H. and B.N. Kim. 2003. Industrial application of electron beam accelerator. News & Inform. Chemical Engineers 21: 484-490.
  13. Ikediala, J.N., J. Tang, L.G. Neven and S.R. Drake. 1999. Quarantine treatment of cherries using 915 MHz microwave: temperature mapping, codling moth mortality and fruit quality. Postharvest Biol. Technol. 16: 127-137. https://doi.org/10.1016/S0925-5214(99)00018-6
  14. Imamura, T., A. Miyanoshita, S. Todoriki and T. Hayashi. 2004a. Usability of a soft electron (low energy electron) machine for disinfestation of grains contaminated with insect pests. Radiation Physics and Chem. 71: 211-213.
  15. Imamura, T., S. Todoriki, N. Sota, H. Nakakita, H. Ikenaga and T. Hayashi. 2004b. Effect of soft electron (low energy electron) treatment on three stored product insect pests. 2004. J. Stored Prod. Res. 40: 169-177. https://doi.org/10.1016/S0022-474X(02)00095-4
  16. Imamura, T., S. Todoriki, A. Miyanoshita, A.K. Horigane, M. Yoshida and T. Hayashi. 2009. Efficacy of soft-electron (low-energy electron) treatment for disinfection of brown rice containing different ages of the maize weevil, Sitophilus zeamais Motschulsky. Radiation Physics and Chem. 78: 627-630. https://doi.org/10.1016/j.radphyschem.2009.03.058
  17. Kader, A.A. 1986. Potential applications of ionizing radiation in postharvest handling of fresh fruits and vegetables. Food Technol. 40: 117-121.
  18. Kang, H.J., Y.J. Kwon, M.W. Byun, H.K. Kim, H.S. Chung, J.U. Choi and J.H. Kwon. 2003. Effects of gamma irradiation and methyl bromide fumigation on quarantine pest and physical quality of apples. Kor. J. Food Sci. Technol. 35: 783-790.
  19. Kwon, J.H., H.J. Kang, D.J. Jo, H.S. Chung, Y.J. Kwon, M.W. Byun, S.J. Choi and J.U. Choi. 2002. Effects of gamma radiation and methyl bromide fumigation on quarantine pest and quality of Asian pear. J. Kor. Soc. Food Sci. Nutr. 31: 57-63. https://doi.org/10.3746/jkfn.2002.31.1.057
  20. Kwon, J.H. 2003. Commercialization of food irradiation technology and the identification of irradiated foods. Food Sci. Industry 36: 50-55.
  21. Lee, J.E., S.R. Moon, H.G. Ahn, S.R. Cho, J.O. Yang, C.M. Yoon and G.H. Kim. 2009. Feeding behavior of Lycorma delicatula (Hemiptera: Fulgoridae) and response on feeding stimulants of some plants. Kor. J. Appl. Entomol. 48: 467-477. https://doi.org/10.5656/KSAE.2009.48.4.467
  22. Lester, P.J., D.J. Rogers, R.J. Petry, P.G. Connolly and P.B. Roberts. 2000. The lethal effects of gamma irradiation on larvae of the Huhu beetle, Prionoplus reticularis: a potential quarantine treatment for New Zealand export pine trees. Entomol. Exp. Appl. 94: 237-242. https://doi.org/10.1046/j.1570-7458.2000.00625.x
  23. Miller, W.R. and R.E. Mcdonald. 1995. Low dose electron beam irradiation: a methyl bromide alternative for quarantine treatment of Florida blueberries. Proc. Fla. State Hort. Soc. 108: 291-293.
  24. Mochida, O. 1973. Effect of gamma radiation on the development and reproduction of the Brown Planthopper, Nilaparvata lugens (Stal) (Homoptera: Delphacidae). Appl. Entomol. Zool. 8: 113-127. https://doi.org/10.1303/aez.8.113
  25. Moon, S.R., D.J. Noh, J.O. Yang, C.M. Yoon, K.S. Ahn and G.H. Kim. 2009. Seasonal occurrence and developmental characteristics of ussur brown katydid, Paratlanticus ussuriensis Uvarov (Orthoptera: Tettigoniidae). Kor. J. Appl. Entomol. 48: 11-19. https://doi.org/10.5656/KSAE.2009.48.1.011
  26. NPQS. 2010. An export and import plants quarantine trends. National Plant Quarantine Service, Anyang.
  27. Park, J.H., G.R. Kim and J.H. Kwon. 2009. Microbiological and physiological qualities of electron-beam and gamma-ray irradiated Sprout Seeds (Radish, Red cabbage) during germination. Kor. J. Food Preserv. 16: 186-191.
  28. Park, J.H., J.M. Lee and S.C. Lee. 2006. Effect of electron-beam irradiation on the characteristics of Green tea (Camellia sinensis L.). Kor. J. Soc. Food Sci. Nutr. 35: 774-779. https://doi.org/10.3746/jkfn.2006.35.6.774
  29. Palou, L., A. Marilla, C.R. Argudo, M. Alonso, J.A. Jacas and M.A. Rio. 2007. Effect of X ray irradiation and sodium carbonate tratments on postharvest Penicillium decay and quality attributes of Clementine mandarins. Postharvest Biol. Technol. 46: 252-261. https://doi.org/10.1016/j.postharvbio.2007.05.006
  30. Pimentel, D. 1991. Handbook of Pest Management in Agriculture. Vols. I. 2nd ed., CRC Press, Boca Raton, Florida. 765 pp.
  31. Rami Reddy, P.V., S. Todoriki, A. Miyanoshita, T. Imamura and T. Hayashi. 2006. Effect of soft electron treatment on adzuki bean weevil, Callosobruchus chinensis (L.) (Coleoptera, Bruchidae). J. Appl. Entomol. 130: 393-399. https://doi.org/10.1111/j.1439-0418.2006.01074.x
  32. Salimov, R.A., V.G. Cherepkov, N.K. Kuksanov and S.A. Kuznetzove. 2000. The use of electron accelerators for radiation disinfestations of grain. Radiation Physics and Chem. 57: 625-627. https://doi.org/10.1016/S0969-806X(99)00484-3
  33. SAS Institute. 2003. SAS/STAT user's guide: statistics, version 9.1 Institute, Cary, N.C., U.S.A.
  34. Sharma, A.K. and R.K. Seth. 2005. Combined effect of gamma radiation and azadirachtin on the growth and development of Spodoptera litura (Fabricius). Current Sci. 89: 1027-1031.
  35. Shim, S.L., K.M. No, K.S. Kim and G.D. Song. 2010. Effect of electron beam irradiation on volatile organic compounds of Vitis labrusca L. Kor. J. Food Preserv. 17: 151-159.
  36. Shin, H.Y., D.W. Lee, H.Y. Choo and C.G. Park. 2001. Survey on the insect pests of major vegetable and floricultural crop in Gyeongnam province. J. Agric. Life Sci. 35: 105-115.
  37. Son, Y.R., K.H. Choi, Y. Kim and Y.G. Kim. 2010. Applicability of CATTS as a postharvest phytosanitation technology against the Peach fruit moth, Carposina sasakii Matsumura. Kor. J. Appl. Entomol. 49: 37-42. https://doi.org/10.5656/KSAE.2010.49.1.037

Cited by

  1. Assessment of electron beam irradiation induced proteomic changes and its effect on the development of silkworm, Bombyx mori (Bombycidae: Lepidoptera) vol.73, 2016, https://doi.org/10.1016/j.jobaz.2015.12.002
  2. Occurrence of Sweet-potato Whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) and Its Response to Insecticide in Gyeonggi Area vol.51, pp.4, 2012, https://doi.org/10.5656/KSAE.2012.09.0.051
  3. Effect of Electron Beam Irradiation on Selected Vegetable Seeds and Plant-Pathogenic Microorganisms vol.23, pp.12, 2013, https://doi.org/10.5352/JLS.2013.23.12.1415
  4. Assessment of electron beam-induced abnormal development and DNA damage in Spodoptera litura (F.) (Lepidoptera: Noctuidae) vol.96, 2014, https://doi.org/10.1016/j.radphyschem.2013.08.008
  5. Arthrospira platensis Mutants Containing High Lipid Content by Electron Beam Irradiation and Analysis of Its Fatty Acid Composition vol.24, pp.6, 2013, https://doi.org/10.14478/ace.2013.1085
  6. Isolation of Chlorella vulgaris Mutants Producing High Lipid and their Characterization vol.26, pp.5, 2015, https://doi.org/10.14478/ace.2014.1135
  7. Isolation of an Arthrospira platensis Mutant Induced by Electron Beam Irradiation and its Characterization vol.26, pp.5, 2015, https://doi.org/10.14478/ace.2015.1076
  8. Effects of Gamma Irradiation on the Survival and Development of the Multicolored Asian Ladybird Beetle, Harmonia axyridis (Coccinellidae; Coleoptera) vol.50, pp.4, 2011, https://doi.org/10.5656/KSAE.2011.10.0.60
  9. Control of Botrytis cinerea and Postharvest Quality of Cut Roses by Electron Beam Irradiation vol.32, pp.4, 2014, https://doi.org/10.7235/hort.2014.14021
  10. Quality Characteristics of Low-Dose Electron Beam Irradiated-Imported Navel Orange during Storage at Room Temperature (20℃) vol.44, pp.3, 2015, https://doi.org/10.3746/jkfn.2015.44.3.455
  11. Effect of electron beam irradiation on developmental stages of Plutella xylostella (Lepidoptera: Plutellidae) vol.14, pp.3, 2011, https://doi.org/10.1016/j.aspen.2011.03.001
  12. Electron beam irradiation induces abnormal development and the stabilization of p53 protein of American serpentine leafminer, Liriomyza trifolii (Burgess) vol.81, pp.1, 2012, https://doi.org/10.1016/j.radphyschem.2011.09.008
  13. Doses of Electron Beam and X-ray Irradiation for Inhibition of Development and Reproduction in Four Insect Pests vol.53, pp.4, 2014, https://doi.org/10.5656/KSAE.2014.10.0.054
  14. A comparative study on the effects of electron beam irradiation on imidacloprid-resistant and -susceptible Aphis gossypii (Hemiptera: Aphididae) vol.112, 2015, https://doi.org/10.1016/j.radphyschem.2015.03.037
  15. Application of Electron Beam Irradiation for Insect Pest Control in Agricultural Products Quarantine [Case study: Myzus persicae and Planococcus citri (Risso)] vol.57, pp.2, 2014, https://doi.org/10.3839/jabc.2014.021
  16. Effect of gamma ray irradiation on egg hatchability and F1 eggs of Tetranychus urticae (Acarina: Tetranychidae) with small scale-up validation vol.18, pp.3, 2015, https://doi.org/10.1016/j.aspen.2015.07.003
  17. Effects of electron beam irradiation on six insect pests in different sections of flower boxes for export vol.18, pp.3, 2015, https://doi.org/10.1016/j.aspen.2015.07.006