Laser Capture Microdissection으로 절제된 마우스의 특정 단계별 정세관에서 Glutathione Peroxidase 유전자의 발현 분석

Expression Analysis of Glutathione Peroxidase Genes in the Stage-Specific Seminiferous Tubules of Mice Excised by a Laser Capture Microdissection

  • Yon, Jung-Min (College of Veterinary Medicine & Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Lin, Chun-Mei (College of Veterinary Medicine & Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Park, Jung-Hoon (College of Veterinary Medicine & Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Hong, Min-Ki (College of Veterinary Medicine & Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Jung, A-Young (College of Veterinary Medicine & Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Kim, Mi-Ra (College of Veterinary Medicine & Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Baek, In-Jeoung (Laboratory of Mammalian Molecular Genetics, Dept. of Biochemistry, College of Science, Yonsei University) ;
  • Lee, Beom-Jun (College of Veterinary Medicine & Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Nam, Sang-Yoon (College of Veterinary Medicine & Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Yun, Young-Won (College of Veterinary Medicine & Research Institute of Veterinary Medicine, Chungbuk National University)
  • 투고 : 2010.03.14
  • 심사 : 2010.04.30
  • 발행 : 2010.06.30

초록

정세관은 매우 복잡한 조직으로 마우스의 정자 발생 과정은 12단계로 구성되어 있다. Glutathione peroxidase(GPx)는 glutathione을 이용하여 과산화물(hydroperoxide)을 환원시키는 대표적인 항산화효소로서 포유류 정자 발생 과정에 관여하는 것으로 알려져 있다. 본 연구에서는 laser capture microdissection(LCM)을 이용하여 마우스 정소에서 발생 단계별로 정세관을 채취하여 real-time PCR로 cytosolic GPx(cGPx), gastrointestinal GPx(GI-GPx), plasma GPx(pGPx) 및 phospholipid hydroperoxide GPx(PHGPx)와 같은 GPx family 유전자의 발현 정도를 비교분석하였다. 동결절편(10 ${\mu}m$)은 정상 성숙 마우스의 정소를 사용하였다. LCM 방법으로 정세관의 단면을 I~V, VII~VIII, IX~XI 단계로 구별하여 채취하였다. PHGPx mRNA의 발현은 다른 GPx mRNA보다 정소에서 현저하게 높게 발현되었다. 정자 발생 단계에서 GI-GPx, pGPx 및 PHGPx의 mRNA는 VII~VIII 단계에서 가장 높았고 XI 단계 이후에 감소되었으며, I~V 단계에서 가장 낮은 발현을 보였다. 그러나, cGPx mRNA는 VII~VIII 단계에서 가장 높았고, XI~XI 단계에서 가장 낮은 발현을 보였다. 본 연구 결과, GPx family 유전자는 정자 발생 단계에서 서로 다르게 조절되며, LCM 방법은 정소세포의 정량 분석에서 유용하게 사용될 것으로 사료된다.

The seminiferous epithelium, with its division into 12 spermatogenic stages in the mouse, is a very complex tissue. Glutathione peroxidase (GPx) is a representative antioxidant enzyme that is capable of reducing organic hydroperoxides to their corresponding hydroxyl compounds utilizing glutathione and is related to the mammalian spermatogenesis. In this study, a real-time PCR was performed in the stage-specific seminiferous tubules of mouse testes excised by a laser capture microdissection (LCM) in order to quantitate the expression levels of a series of GPx genes including cytosolic GPx (cGPx), gastrointestinal GPx (GI-GPx), plasma GPx (pGPx), and phospholipid hydroperoxide GPx (PHGPx). Frozen sections (10 ${\mu}m$) were obtained from normal adult mouse testes. LCM was used to capture all the cells that were grouped into stages I-V, VII-VIII, and IX-XI in cross-sections of seminiferous tubules. The expression level of PHGPx mRNA was remarkably higher than those of other GPx mRNAs in mouse testes. During spermatogenesis, the expressions of GI-GPx, pGPx, and PHGPx mRNAs were highest on stages VII-VIII, began to decrease after stage XI, and showed a lowest level on stage I-V. However, the expressions of cGPx mRNA were highest on stages VII-VIII, and showed a lowest level on stage XI-XI. These findings indicate that GPx genes are expressed differentially on mouse spermatogenesis and also LCM can be an useful tool in cellular quantitative analysis of testes.

키워드

참고문헌

  1. Agarwal N, Lippmann ES, Shusta EV (2010) Identification and expression profiling of blood-brain barrier membrane proteins. J Neurochem 112:625-635. https://doi.org/10.1111/j.1471-4159.2009.06481.x
  2. Aly HA, Domenech O, Abdel-Naim AB (2009) Aroclor 1254 impairs spermatogenesis and induces oxidative stress in rat testicular mitochondria. Food Chem Toxicol 47:1733-1738. https://doi.org/10.1016/j.fct.2009.03.019
  3. Avissar N, Kerl EA, Baker SS, Cohen HJ (1994) Extracellular glutathione peroxidase mRNA and protein in human cell lines. Arch Biochem Biophys 309:239-246. https://doi.org/10.1006/abbi.1994.1108
  4. Baek IJ, Seo DS, Yon JM, Lee SR, Jin Y, Nahm SS, Jeong JH, Choo YK, Kang JK, Lee BJ, Yun YW, Nam SY (2007) Tissue expression and cellular localization of phospholipid hydroperoxide glutathione peroxidase (PHGPx) mRNA in male mice. J Mol Histol 38:237-244. https://doi.org/10.1007/s10735-007-9092-7
  5. Brigelius-Flohe R (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 27:951-965. https://doi.org/10.1016/S0891-5849(99)00173-2
  6. Chu FF, Esworthy RS (1995) The expression of an intestinal form of glutathione peroxidase (GSHPx-GI) in rat intestinal epithelium. Arch Biochem Biophys 323: 288-294. https://doi.org/10.1006/abbi.1995.9962
  7. Diaconu M, Tangat Y, Bohm D, Kuhn H, Michelmann HW, Schreiber G, Haidl G, Glander HJ, Engel W, Nayernia K (2006) Failure of phospholipid hydroperoxide glutathione peroxidase expression in oligoasthenozoospermia and mutations in the PHGPx gene. Andrologia 38:152-157. https://doi.org/10.1111/j.1439-0272.2006.00729.x
  8. Drevet JR (2006) The antioxidant glutathione peroxidase family and spermatozoa: a complex story. Mol Cell Endocrinol 250:70-79. https://doi.org/10.1016/j.mce.2005.12.027
  9. Flohe L, Gunzler WA, Schock HH (1973) Glutathione peroxidase: selenoenzyme. FEBS Lett 32:132-134. https://doi.org/10.1016/0014-5793(73)80755-0
  10. Foresta C, Flohe L, Garolla A, Roveri A, Ursini F, Maiorino M (2002) Male fertility is linked to the selenoprotein phospholipid hydroperoxide glutathione peroxidase. Biol Reprod 67:967-671. https://doi.org/10.1095/biolreprod.102.003822
  11. Fraga CG, Motchnik PA, Shigenaga MK, Helbock HJ, Jacob RA, Ames BN (1991) Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Natl Acad Sci USA 88:11003-11006. https://doi.org/10.1073/pnas.88.24.11003
  12. Gu W, Hecht NB (1996) Developmental expression of glutathione peroxidase, catalase, and manganese superoxide dismutase mRNAs during spermatogenesis in the mouse. J Androl 17:256-262.
  13. Imai H (2010) New strategy of functional analysis of PHGPx knockout mice model using transgenic rescue method and Cre-LoxP system. J Clin Biochem Nutr 46:1-13.
  14. Imai H, Sumi D, Hanamoto A, Arai M, Sugiyama A (1995) Molecular cloning and functional expression of a cDNA for rat phospholipid hydroperoxide glutathione peroxidase: 3'-untranslated region of the gene is necessary for functional expression. J Biochem 118: 1061-1067. https://doi.org/10.1093/jb/118.5.1061
  15. Lonnie DR, Ettlin RA, Sinha Hikim AP, Clegg ED (1990) Histological and histopathological evaluation of the testis. Cache River Press, USA pp.4-47.
  16. Moreno SG, Laux G, Brielmeier M, Bornkamm GW, Conrad M (2003) Testis-specific expression of the nuclear form of phospholipid hydroperoxide glutathion peroxidase (PHGPx). Biol Chem 384:635-643. https://doi.org/10.1515/BC.2003.070
  17. Nam SY, Fujisawa M, Kim JS, Kurohmaru M, Hayashi Y (1998) Expression pattern of phospholipid hydroperoxide glutathione peroxidase messenger ribonucleic acid in mouse testis. Biol Reprod 58:1272-1276. https://doi.org/10.1095/biolreprod58.5.1272
  18. Paul C, Teng S, Saunders PT (2009) A single, mild, transient scrotal heat stress causes hypoxia and oxidative stress in mouse testes, which induces germ cell death. Biol Reprod 80:913-919. https://doi.org/10.1095/biolreprod.108.071779
  19. Richburg JH (2000) The relevance of spontaneous- and chemically-induced alterations in testicular germ cell apoptosis to toxicology. Toxicol Lett 112-113:79-86. https://doi.org/10.1016/S0378-4274(99)00253-2
  20. Schwaab V, Faure J, Dufaure JP, Drevet JR (1998) GPx3: the plasma-type glutathione peroxidase is expressed under androgenic control in the mouse epididymis and vas deferens. Mol Reprod Dev 51:362-372. https://doi.org/10.1002/(SICI)1098-2795(199812)51:4<362::AID-MRD2>3.0.CO;2-L
  21. Sluka P, O'Donnell L, McLachlan RI, Stanton PG (2008) Application of laser-capture microdissection to analysis of gene expression in the testis. Prog Histochem Cytochem 42:173-201. https://doi.org/10.1016/j.proghi.2007.10.001
  22. Suna S, Yamaguchi F, Kimura S, Tokuda M, Jitsunari F (2007) Preventive effect of D-psicose, one of rare ketohexoses, on di-(2-ethylhexyl) phthalate (DEHP)-induced testicular injury in rat. Toxicol Lett 173:107-117. https://doi.org/10.1016/j.toxlet.2007.06.015
  23. Ursini F, Bindoli A (1987) The role of selenium peroxidases in the protection against oxidative damage of membranes. Chem Phys Lipids 44:255-276. https://doi.org/10.1016/0009-3084(87)90053-3
  24. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  25. Wang S, Wang L, Zhu T, Gao X, Li J, Wu Y, Zhu H (2010) Improvement of tissue preparation for laser capture microdissection: application for cell type-specific miRNA expression profiling in colorectal tumors. BMC Genomics 11:163. https://doi.org/10.1186/1471-2164-11-163
  26. Zhang JX, Yue WB, Ren YS, Zhang CX (2010) Enhanced role of elaidic acid on acrylamide-induced oxidative stress in epididymis and epididymal sperm that contributed to the impairment of spermatogenesis in mice. Toxicol Ind Health In press.