Cortical Thickness Estimation Using DIR Imaging with GRAPPA Factor 2

DIR 영상을 이용한 피질두께 측정: GRAPPA 인자 2를 이용한 비교

  • Choi, Na-Rae (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Nam, Yoon-Ho (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Dong-Hyun (School of Electrical and Electronic Engineering, Yonsei University)
  • 최나래 (연세대학교 전기전자공학과) ;
  • 남윤호 (연세대학교 전기전자공학과) ;
  • 김동현 (연세대학교 전기전자공학과)
  • Received : 2010.05.31
  • Accepted : 2010.06.17
  • Published : 2010.06.30

Abstract

Purpose : DIR image is relatively free from susceptibility artifacts therefore, DIR image can make it possible to reliably measure cortical thickness/volume. One drawback of the DIR acquisition is the long scan time to acquire the fully sampled 3D data set. To solve this problem, we applied a parallel imaging method (GRAPPA) and verify the reliability of using the volumetric study. Materials and methods : Six healthy volunteers (3 males and 3 females; age $25.33{\pm}2.25$ years) underwent MRI using the 3D DIR sequence at a 3.0T Siemens Tim Trio MRI scanner. GRAPPA simulation was performed from the fully sampled data set for reduction factor 2. Data reconstruction was performed using MATLAB R2009b. Freesurfer v.4.3.0 was used to evaluate the cortical thickness of the entire brain, and to extract white matter information from the DIR image, Analyze 9.0 was used. The global cortical thickness estimated from the reconstructed image was compared with reference image by using a T-test in SPSS. Results : Although reduced SNR and blurring are observed from the reconstructed image, in terms of segmentation the effect was not so significant. The volumetric result was validated that there were no significant differences in many cortical regions. Conclusion : This study was performed with DIR image for a volumetric MRI study. To solve the long scan time of 3D DIR imaging, we applied GRAPPA algorithm. According to the results, fast imaging can be done with reduction factor 2 with little loss of image quality at 3.0T.

목적 : 본 논문에서는 DIR 영상을 이용하여 두뇌의 피질두께측정 연구를 수행하는 한편 평행 영상기법 중 하나인 GRAPPA (generalized autocalibrating partially parallel acquisitions)를 이용하여 GRAPPA 인자 (reduction factor, R)가 2일 때와 평행 영상기법을 이용하지 않았을 때의 결과 비교를 통해 3D DIR 영상의 획득시간 단축 가능성을 제시하고자 한다. 대상 및 방법 : 3.0T 자기공명영상장치 (Siemens Tim Trio MRI scanner)의 3D DIR 펄스열을 이용하여 6명(남자 3명, 여자 3명, $25.33{\pm}2.25$살)의 정상인 뇌에 대한 3차원 영상을 얻었다. GRAPPA 시뮬레이션은 R=2 일 때를 가정하여 수행되었고 두뇌 피질두께측정을 위해 Analyze 9.0과 Freesurfer v.4.3.0 프로그램을 사용하였다. 결과로 얻은 데이터를 T-검증을 이용하여 비교분석 하였다. 결과 : GRAPPA 기법을 통하여 복원한 영상이 잡음이 증가하는 경향을 보였으나 두뇌 피질두께 측정에는 별다른 영향을 미치지 않았다. 통계분석을 통해 비교한 결과 대부분의 두뇌 영역에서 참조영상과 GRAPPA 기법을 이용한 영상의 차이가 유의하지 않았다. 결론 : 피질두께측정 연구에 있어서 3D DIR영상의 문제점 중 하나는 긴 영상획득시간이다. 따라서 평행영상 기법 중 하나인 GRAPPA 영상기법을 적용하면 피질두께측정 연구결과의 큰 차이없이 영상 획득 시간을 단축시킬 수 있다.

Keywords

References

  1. Mugler JP, 3rd, Brookeman JR. Rapid three-dimensional T1- weighted MR imaging with the MP-RAGE sequence. J Magn Reson Imaging 1991;1(5):561-567 https://doi.org/10.1002/jmri.1880010509
  2. Pouwels PJ, Kuijer JP, Mugler JP, 3rd, Guttmann CR, Barkhof F. Human gray matter: feasibility of single-slab 3D double inversion- recovery high-spatial-resolution MR imaging. Radiology 2006;241(3):873-879 https://doi.org/10.1148/radiol.2413051182
  3. Yoo E, Kim D-H, Park H-J, Kim E-Y. Unreliability of Cortical Volumetry in Regions near The Skull Base on 3D T1-weighted Imaging: Comparision study with 3D Double Inversion-recovery Imaging. 2008; 16th Scientific Meeting of the International Society of Magnetic Resonance in Medicine, Toronto, Canada. p 3502
  4. Edelman RR, Chien D, Kim D. Fast selective black blood MR imaging. Radiology 1991;181(3):655-660 https://doi.org/10.1148/radiology.181.3.1947077
  5. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47(6):1202-1210 https://doi.org/10.1002/mrm.10171
  6. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42(5):952-962 https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
  7. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997;38(4):591-603 https://doi.org/10.1002/mrm.1910380414
  8. Park HJ, Youn T, Jeong SO, Oh MK, Kim SY, Kim EY. SENSE factors for reliable cortical thickness measurement. Neuroimage 2008;40(1):187-196 https://doi.org/10.1016/j.neuroimage.2007.11.013
  9. Lindholm TL, Botes L, Engman EL, Frank A, Jonsson T, Svensson L, Julin P. Parallel imaging: is GRAPPA a useful acquisition tool for MR imaging intended for volumetric brain analysis? BMC Med Imaging 2009;9:15 https://doi.org/10.1186/1471-2342-9-15
  10. Huang F, Li Y, Vijayakumar S, Hertel S, Duensing GR. Highpass GRAPPA: An image support reduction technique for improved partially parallel imaging. Magnetic Resonance in Medicine 2008;59(3):642-649 https://doi.org/10.1002/mrm.21495
  11. Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M, Killiany R, Maguire P, Rosas D, Makris N, Dale A, Dickerson B, Fischl B. Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 2006;32(1):180-194 https://doi.org/10.1016/j.neuroimage.2006.02.051
  12. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 1999;9(2):179-194 https://doi.org/10.1006/nimg.1998.0395
  13. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. P Natl Acad Sci USA 2000;97(20):11050-11055 https://doi.org/10.1073/pnas.200033797
  14. Lee H, Kim EY, Seo JS, Park J. Reliable Cortical Thickness Estimation With Reduction of Susceptibility-Induced Signal Loss Using Optimized T1-weighted Single Slab Turbo Spin Echo Pulse Sequence. 2010; 18th Scientific Meeting of the International Society of Magnetic Resonance in Medicine, Stockholm, Sweden. p 686
  15. Park MH, Lee JW, Lee KW, Ryu CW, Jahng GH. Optimizations of 3D MRI Techniques in Brain by Evaluating SENSE Factors. J Korean Soc Magn Reson Med 2009;13:161- 170