정밀여과용 관형막을 이용한 바이오디젤 제조

Biodiesel Production using Microfiltration Tubular Membrane

  • 이원중 (서울산업대학교 화학공학과) ;
  • 정건용 (서울산업대학교 화학공학과)
  • Lee, Won-Joong (Department of Chemical Engineering, Seoul National University of Technology) ;
  • Chung, Kun-Yong (Department of Chemical Engineering, Seoul National University of Technology)
  • 투고 : 2010.05.24
  • 심사 : 2010.06.16
  • 발행 : 2010.06.30

초록

카놀라유, 대두유, 자트로파유와 메탄올을 연속적으로 분리막 반응기에 순환시켜 바이오디젤을 제조하였다. 분리막은 반응기 역할과 반응 생성물로부터 미반응된 유지를 분리하여 고순도의 fatty acid methyl ester (FAME)를 생산하는 역할을 한다. 공칭 세공크기 0.2, 0.5 ${\mu}m$인 정밀여과형 세라믹 관형 분리막을 사용하였다. 운전압력 0.5 bar에서 0.2 ${\mu}m$ 정밀여과막에 대한 투과유속은 공급유량 400 mL/min일 경우 15 L/$m^2{\cdot}hr$이었다. 또한 투과액중 FAME 함량은 0.5 bar에서 가장 높았으며 운전압력이 증가할수록 감소하였다.

Biodiesel was produced from Canola, soybean and Jatropha oils combined methanol using continuously recycled membrane reactor. The membrane served to react and separate the unreacted oil from the product stream, producing high-purity fatty acid methyl ester (FAME). Two ceramic tubular membranes having different nominal pore sizes of 0.2 and 0.5 ${\mu}m$ were used. Permeate was observed at 0.5, 1.0 and 2.0 bar with a given flow rate, respectively. The permeate flux for 0.2 ${\mu}m$ membrane at 0.5 bar and 400 mL/min flow rate was 15 L/$m^2{\cdot}hr$. Also FAME content in permeate was the highest at 0.5 bar, and decreased with increasing operating pressure.

키워드

참고문헌

  1. K. Y. Chung, L. H. Kim, S. I. Chen, W. J. Lee, and H. C. Shin, ''The experiment of oxidation characteristics for biodiesel," Technical Report, Seoul National Univ. of Tech. (2007).
  2. Y. Wang, X. Wang, Y. Liu, S. Ou, Y. Tan, and S. Tang, "Refining of biodiesel by ceramic membrane separation," Fuel Processing Tech., 90, 422 (2009). https://doi.org/10.1016/j.fuproc.2008.11.004
  3. P. Cao, M. A. Dube, and A. Y. Tremblay, "Highpurity fatty acid methyl ester production from canola, soybean, palm, and yellow grease lipids by means of a membrane reactor," Biomass & Bioenergy, 32, 1028 (2008). https://doi.org/10.1016/j.biombioe.2008.01.020
  4. P. Cao, M. A. Dube, and A. Y. Tremblay, "Methanol recycling in the production of biodiesel in a membrane reactor," Fuel, 87, 825 (2008). https://doi.org/10.1016/j.fuel.2007.05.048
  5. Young Lin Corporation, "Analysis of ester contents in biodiesel using gas chromatography," www.younglin.com (2009).
  6. P. DeRoussel, D. V. Khakhar, and J. M. Ottino, "Mixing of viscous immiscible liquids. Part 2: Over-emulsification-Interpretation and use," Chem. Eng. Sci., 56, 5531 (2001). https://doi.org/10.1016/S0009-2509(01)00162-2
  7. P. Cao, A. Y. Tremblay, M. A. Dube, and K. Morse, "Effect of membrane pore size on the performance of a membrane reactor for biodiesel production," Ind. Eng. Chem. Res., 46, 52 (2007). https://doi.org/10.1021/ie060555o
  8. K. Y. Chung, J. J. Kim, K. J. Kim, and A. G. Fane, "Microfiltration characteristics for emulsified oil in water," Membrane Journal, 8, 203 (1998).
  9. S. H. Yoon and C. H. Lee, "The critical flux in micro filtration: Comparison between theoretical and experiment values," Membrane Journal, 7, 150 (1997).
  10. J. G. Choi and K. Y, Chung, "Permeation characteristics of the microfiltration tubular module using the discharged rod," Membrane Journal, 19, 285 (2009).
  11. E. Warsiki and G. Sitompul, "Jatropha curcas as biodiesel feedstocks," pp 5-75, SBRC, New York (2007).