Abstract
In this paper we generate Gold-sequence by using M-sequence which is made by two primitive polynomial of GF(2). Generally M-sequence is generated by linear feedback shift register code generator. Here we show that this matrix of appropriate permutation has Hadamard matrix property. This matrix proves that Gold-sequence through two M-sequence and additive matrix of one column has one of major properties of Hadamard matrix, orthogonal. and this matrix show another property that multiplication with one matrix and transpose matrix of this matrix have the result of unit matrix. Also M-sequence which is made by linear feedback shift register gets Hadamard matrix property mentioned above by adding matrices of one column and one row. And high-speed conversion is possible through L-matrix and the S-matrix.
본 논문에서는 GF(2)에서의 두 생성다항식에 의해 생성된 M-sequence로 Gold-Sequence를 생성한 후, Permutation을 해줌으로써 Hadamard 행렬의 특성을 가지게 됨을 살펴보았다. M-sequence는 선형 귀환 천이 레지스터 부호 생성기(Linear feedback shift register code generator)에 의해 생성되었으며, 두 개의 M-sequence에 의해 생성된 Gold-sequence의 첫 열에 $8\times1$의 영행렬을 추가하고 Permutation을 시켜줌으로써 Hadamard 행렬의 주요 성질인 직교성(Orthogonal)과 한 행렬과 이 행렬의 Transpose시킨 행렬의 결과가 단위행렬이 되고, 역행렬은 element-wise Inverse가 되며, 고속 Jacket행렬의 성질을 만족한다. 또한 선형 귀환 축차 생성기를 통하여 생성된 M-sequence의 1행과 1열을 추가함으로써 위에서 언급한 Hadamard 행렬의 주요 성질을 만족하고 L-matrix 와 S-matrix 를 통하여 고속변환이 가능함을 보인다.