DOI QR코드

DOI QR Code

GC-MS Analysis of Amur Cork Tree Extract and Its Degradation Products

  • Received : 2010.06.21
  • Accepted : 2010.06.27
  • Published : 2010.06.06

Abstract

The Degradation of amur cork tree extract is investigated by GC-MS after treating the dye with three thermal degradation systems of, room temperature (RT), $4^{\circ}C$ refrigeration (LT), $100^{\circ}C$ oven (OV), and $H_2O_2$/UV/$O_2$ (PER) degradation system for 0-24 days. It was found that PER degradation system represented the highest intensity of degradation treatment followed by OV treatment among the four degradation parameters. The possible fingerprint products of amur cork tree dye, that yielded 68% (or higher) reliability in the NIST spectral match, were isobenzofuran-1,3-dione,4,5-dimethoxy- (8.37 min, PER only), 1,3-dioxolo[4,5-g]isoquinolin-5(6H)-one,7,8-dihydro (9.41 min, PER only), canthine-6-one (10.24 min, RT, LT, OV only), and dihydroberberine (15.05 min, RT, LT, OV, PER) in the order of higher to lower possibility of detection. Unknown products 7 (13.43 min) and 8 (16.35 min) are two other possible fingerprint products of amur cork tree dye that require future identification.

Keywords

References

  1. Agilent Technologies. (2000). NIST 98 Mass Spectra Library (Rev. D.02.00) [Database software]. Gaithersburg, MD: National Institute of Standards and Technologies.
  2. Ahn, C. (2007). Separation of chromophoric substance of Sappanwood under different extraction conditions. Journal of the Korean Society of Clothing and Textiles, 31(12), 1653-1661. https://doi.org/10.5850/JKSCT.2007.31.12.1653
  3. Ahn, C. (2009a). Separation of chromophoric substance from amur cork tree using GC-MS. Journal of the Korean Society of Clothing and Textiles, 33(6), 980-989. https://doi.org/10.5850/JKSCT.2009.33.6.980
  4. Ahn, C. (2009b). Examination of berberine dye using GCMS after selective degradation treatments. Journal of the Korean Society of Clothing and Textiles, 33(12), 2002-2010. https://doi.org/10.5850/JKSCT.2009.33.12.2002
  5. Ahn, C., & Obendorf, S. K. (2004). Dyes on archaeological textiles: Analyzing alizarin and its degradation products. Textile Research Journal, 74(11), 949-954. https://doi.org/10.1177/004051750407401102
  6. Ahn, C., & Obendorf, S. K. (2007). GC-MS analysis of curcumin dye after selective degradation treatment. Fibers and Polymers, 8(3), 278-283. https://doi.org/10.1007/BF02877270
  7. Brushwood, D. E. (1988). Effects of heating on chemical and physical properties and processing. Textile Research Journal, 58(6), 309-317. https://doi.org/10.1177/004051758805800601
  8. Buchler GmbH. (2008). Quinic acid. Retrieved June 17, 2010, from http://www.quinine-buchler.com/quinicacidtotal.htm
  9. Child, A. M. (1995). Towards an understanding of the microbial decomposition of archaeological bone in the burial environment. Journal of Archaeological Science, 22, 165-174. https://doi.org/10.1006/jasc.1995.0018
  10. Cooper, W. J., & Lean D. R. S. (1989). Hydrogen peroxide concentration in a northern lake: Photochemical formation and dial variability. Environmental Science & Technology, 23, 1425-1428. https://doi.org/10.1021/es00069a017
  11. Gentry, E. J., Jamani, H. B., Keshavarz-Shokri, A., Morton, M. D., Velde, D. V., Telikepalli, H., & Mitscher, I.. A. (1998). Antitubercular natural products: Berberine from the roots of commercial hydrastis canadensis powder. Isolation of inactive 8-oxotetrahydrothalifendine, canadine, $\beta$-hydrastine, and two new quinic acid esters, hycandinic acid esters-1 and -2. Journal of National Products, 61(10), 1187-1193. https://doi.org/10.1021/np9701889
  12. Ikuta, A., Nakamura, T., & Urabe, H. (1998). Indolopyridoquinazoline, furoquinoline and canthinone type alkaloids from Phellodendron amurense callus tissues. Phytochemistry, 48(2), 285-291. https://doi.org/10.1016/S0031-9422(97)01130-8
  13. Ikuta, A., Urabe, H., & Nakamura, T. (1998). A new indolopyridoquinazoline-type alkaloid from Phellodendron amurense callus tissues. Journal of Natural Products, 61(8), 1012-1014. https://doi.org/10.1021/np970406y
  14. Jarosz-Wilkolazka, A., Kochrnanska-Rdest, J., Malarczyk, E., Wardas, W., & Leonowicz, A. (2002). Fungi and their ability to dccolourize azo and anthraquinonic dyes. Enzyme and Microbial Technology, 30, 566-572. https://doi.org/10.1016/S0141-0229(02)00022-4
  15. McLafferty, F. W., Staufferb, D. B., & Lohb, S. Y. (1991). Comparative evaluations of mass spectral data bases. Journal of the American Society for Mass Spectrometry, 2(5), 438-440. https://doi.org/10.1016/1044-0305(91)85011-T
  16. Needles, H. L., Cassman, V., & Collins, M. J. (1986). Mordanted, natural-dyed wool and silk fabrics: Light and burial-induced changes in the color and tensile properties. In H. L. Needles & S. H. Zeronian (Eds.), ACS Symposium Series 212 (pp. 199-210). Washington, DC: American Chemical Society.
  17. Needles, H. L., & Nowak, K. C. J. (1989). Heat-induced aging of linen. In S. H. Zeronian & H. L. Needles(Eds.), ACS Symposium Series 410 (pp. 159-167). Washington, DC: American Chemical Society.
  18. Peacock. E. E. (1996). Characterization and simulation of water-degraded archaeological textiles: A Review. International Biodeterioration & Biodegradation, 1996, 35-47.
  19. Rieger, S. (1983). The genesis and classification of cold soils. New York: Academic Press.
  20. Scheck, C. K., & Frimmel, F. H. (1995). Degradation of phenol and salicylic acid by ultraviolet radiation/hydrogen peroxide/oxygen. Water Research, 29(10), 2346-2352. https://doi.org/10.1016/0043-1354(95)00060-X
  21. Song, J. F., He, Y. Y., & Guo, W. (2002). Polarographic determination of berberine in the presence of $H_{2}O_{2}$ in medicinal plants. Journal of Pharmaceutical and Biomedical Analysis, 28, 355-363. https://doi.org/10.1016/S0731-7085(01)00594-5
  22. Turner, N., Li, J. Y., Gosby, A., To, S. W. C., Cheng, Z., Miyoshi, H., Taketo, M. M., Cooney, G. J., Kraegen, E. W., James, D. E., Hu, L. H., Li, J., & Ye, J. M. (2008a). Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I. Diabetes,57(5), 1414-1418. https://doi.org/10.2337/db07-1552
  23. Turner, N., Li, J. Y., Gosby, A., To, S. W. C., Cheng, Z., Miyoshi, H., Taketo, M. M., Cooney, G. J., Kraegen, E. W.,James, D. E., Hu, L. H., Li, J., & Ye, J. M. (2008b). On-line Appendix. Supplementary methods. Diabetes. Retrieved May 20, 2009, from Http://diabetes.diabetesjoumals.org/contentivo10/issue2008/images/data/db071552/DCl/diabetes.doc
  24. Vennerstrom, J. L., Lovelace, J. K., Waits, V. B., Hanson, W. L., & Klayman, D. L. (1990). Berberine derivatives as antileishmanial drugs. Antimicrobial Agents and Chemotherapy, 34(5), 918-921. https://doi.org/10.1128/AAC.34.5.918
  25. Wikipedia The Free Encyclopedia. (2010). Quinic acid. Retrieved June 17, 2010, from http://en.wikipedia.org/wiki/Quinic_acid

Cited by

  1. Study on the Degradation Behavior of Berberine Dye and Berberine Dyed Silk using Hydrogen Peroxide/UV/Oxygen Treatment vol.20, pp.2, 2012, https://doi.org/10.7741/rjcc.2012.20.2.238
  2. Analysis of Volatile Compounds in Phellodendron amurense Ruprecht, Coptis japonica Makino, and Chelidonium majus var. asiaticum by TD GC/MS vol.50, pp.5, 2013, https://doi.org/10.12772/TSE.2013.50.275
  3. Analysis of Amur Cork Tree Extract and Dyed Silk upon Thermal Degradation Treatment vol.35, pp.10, 2011, https://doi.org/10.5850/JKSCT.2011.35.10.1228