DOI QR코드

DOI QR Code

Contextual In-Video Advertising Using Situation Information

상황 정보를 활용한 동영상 문맥 광고

  • Yi, Bong-Jun (Department of Computer and Radio Communications Engineering, Korea University) ;
  • Woo, Hyun-Wook (Department of Computer and Radio Communications Engineering, Korea University) ;
  • Lee, Jung-Tae (Department of Computer and Radio Communications Engineering, Korea University) ;
  • Rim, Hae-Chang (Division of Computer and Communications Engineering, Korea University)
  • 이봉준 (고려대학교 컴퓨터.전파통신공학과) ;
  • 우현욱 (고려대학교 컴퓨터.전파통신공학과) ;
  • 이정태 (고려대학교 컴퓨터.전파통신공학과) ;
  • 임해창 (고려대학교 컴퓨터.통신공학부)
  • Received : 2010.06.24
  • Accepted : 2010.08.10
  • Published : 2010.08.31

Abstract

With the rapid growth of video data service, demand to provide advertisements or additional information with regard to a particular video scene is increasing. However, the direct use of automated visual analysis or speech recognition on videos virtually has limitations with current level of technology; the metadata of video such as title, category information, or summary does not reflect the content of continuously changing scenes. This work presents a new video contextual advertising system that serves relevant advertisements on a given scene by leveraging the scene's situation information inferred from video scripts. Experimental results show that the use of situation information extracted from scripts leads to better performance and display of more relevant advertisements to the user.

동영상 데이터 서비스가 나날이 증가함에 따라 특정 동영상 장면에 적합한 광고를 보여주거나 추가적인 정보를 제공하려는 요구가 커지고 있다. 장면에 적합한 광고를 보여주기 위하여 동영상의 영상이나 음성 정보를 직접 이용하는 방법은 현재의 기술력으로 한계가 있고, 제목, 카테고리 정보, 요약 등의 메타데이터도 계속해서 변화하는 장면의 내용을 반영하지 못한다. 본 연구는 동영상의 대본 자막에서 추출한 장면의 상황 정보를 이용하여 주어진 동영상 장면에 적합한 광고를 자동으로 부착해 주는 새로운 동영상 문맥 광고 시스템을 제안한다. 대본 자막에서 추출한 상황 정보를 광고 검색에 이용했을 때 높은 성능 향상을 확인할 수 있었고, 이를 이용하여 사용자에게 더 적합한 광고를 보여줄 수 있다.

Keywords

References

  1. B. Ribeiro-Neto, et al., "Impedance Coupling in Content-targeted Advertising", Proc. of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 496-503, August, 2005.
  2. W. Yih, et al., "Finding Advertising Keywords on Web Pages", Proc. of the 15th international conference on World Wide Web, pp. 213-222, May, 2006.
  3. A. Broder, et al., "A Semantic Approach to Contextual Advertising", Proc. of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 559-566, July, 2007.
  4. J. Lee, et al., "Finding Advertising Keywords on Video Scripts", Proc. of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pp. 686-687, July, 2009.
  5. G. Mishne, et al., "Experiments with Mood Classification in Blog Posts", Proc. of ACM SIGIR 2005 Workshop on Stylistic Analysis Of Text For Information Access, August, 2005.
  6. R. Malouf, "A comparison of algorithms for maximum entropy parameter estimation", Proc. of the 6th conference on Natural language learning, pp. 1-7, September, 2002.
  7. Y. Yang, et al., "A Comparative Study on Feature Selection in Text Categorization", Proc. of International Conference on Machine Learning, pp. 412-420, July, 1997.
  8. K. Jarvelin, et al., "Cumulated Gain-Based Evaluation of IR Techniques", ACM Transactions on Information Systems, Vol. 20, No. 4, pp. 422-446, October, 2002. https://doi.org/10.1145/582415.582418
  9. D. Metzler and W. B. Croft, "Combining the Language Model and Inference Network Approaches to Retrieval", Information Processing & Management, Volume 40, Issue 5, pp. 735-750, September 2004. https://doi.org/10.1016/j.ipm.2004.05.001