Fuzzy r-minimal Preopen Sets And Fuzzy r-M Precontinuous Mappings On Fuzzy Minimal Spaces

민원근^{*}·김영기^{**}

Won Keun Min and Young Key Kim

* 강원대학교 수학과

** 명지대학교 수학과

요 약

fuzzy r-minimal preopen set, fuzzy r-M precontinuous와 fuzzy r-M preopen 함수의 개념을 소개하며 특성들을 조사 한다.

Abstract

We introduce the concept of fuzzy r-minimal preopen set on a fuzzy minimal space. We also introduce the concept of fuzzy r-M precontinuous mapping which is a generalization of fuzzy r-M continuous mapping, and investigate characterization of fuzzy r-M precontinuity.

Key Words: fuzzy minimal structures, r-minimal open, r-minimal preopen, fuzzy r-M continuous, fuzzy r-M precontinuous

1. Intorduction

The concept of fuzzy set was introduced by Zadeh [5]. Chang [1] defined fuzzy topological spaces using fuzzy sets. In [2], Chattopadhyay, Hazra and Samanta introduced the smooth topological space which is a generalization of a fuzzy topological space. In [4], we introduced the concept of fuzzy r-minimal space which is an extension of the smooth topological space. The concepts of fuzzy r-open sets and fuzzy r-M continuous mappings are also introduced and studied.

In this paper, we introduce the concept of fuzzy r-minimal preopen sets and study some related properties. We also introduce the concept of fuzzy r-M precontinuous mappings, which is a generalization of fuzzy r-M continuous mapping. In particular, we investigate some characterization for the fuzzy r-M precontinuous mapping in terms of fuzzy r-minimal interior and fuzzy r-minimal closure operators.

2. Preliminaries

Let *I* be the unit interval [0,1] of the real line. A member *A* of I^X is called a *fuzzy set* [5] of *X*. By $\tilde{0}$ and $\tilde{1}$, we denote constant maps on X with value 0 and 1, respectively.

접수일자 : 2010년 4월 14일

완료일자 : 2010년 5월 20일

For any $A \in I^X$, A^c denotes the complement $\tilde{1} - A$. All other notations are standard notations of fuzzy set theory.

A *fuzzy point* x_{α} in X is a fuzzy set x_{α} is defined as follows

$$x_{\alpha}(y) = \begin{cases} \alpha, & \text{if } y = x, \\ 0, & \text{if } y \neq x. \end{cases}$$

A fuzzy point x_{α} is said to belong to a fuzzy set Ain X, denoted by $x_{\alpha} \in A$, if $\alpha \leq A(x)$ for $x \in X$.

A fuzzy set A in X is the union of all fuzzy points which belong to A.

Let $f: X \to Y$ be a mapping and $A \in I^X$ and $B \in I^Y$. Then f(A) is a fuzzy set in Y, defined by

$$f(A)(y) = \begin{cases} A(z)_{z \in f^{-1}(y)}, & \text{if } f^{-1}(y) \neq \emptyset, \\ 0, & \text{otherwise,} \end{cases}$$

for $y \in Y$ and $f^{-1}(B)$ is a fuzzy set in X, defined by $f^{-1}(B)(x) = B(f(x)), x \in X.$

A smooth topology [2, 3] on X is a map $T: I^X \to I$ which satisfies the following properties:

- (1) $T(\tilde{0}) = T(\tilde{1}) = 1.$
- (2) $T(A_1 \wedge A_2) \ge T(A_1) \wedge T(A_2)$ for $A_1, A_2 \in I^X$.
- (3) $T(\vee A_i) \ge \wedge T(A_i)$ for $A_i \in I^X$.
- The pair (X, T) is alled a smooth topological space.

Let X be a nonempty set and $r \in (0,1]=I_0$. A fuzzy family $M: I^X \to I$ on X is said to have a *fuzzy* r *-minimal structure* [4] if the family

$$M_r = \{ A \in I^X : M(A) \ge r \}$$

contains 0 and 1.

Then the (X,M) is called a *fuzzy* r-*minimal space* (simply r-FMS) [4]. Every member of M_r is called a *fuzzy* r-*minimal open set.* A fuzzy set A is called a *fuzzy* r-*minimal closed set* if the complement of A (simply, A^c) is a fuzzy r-minimal open set.

Let (X,M) be an r-FMS and $r \in (0,1]=I_0$. The fuzzy r-minimal closure of A, denoted by mC(A,r), is defined as

$$\mathrm{mC}(A,r) = \cap \{B \in I^X: B^c \in M_r \text{ and } A \subseteq B\}[4].$$

The fuzzy r-minimal interior of A, denoted by mI(A, r), is defined as

mI(A,r)= \cup { $B \in I^X$: $B \in M_r$ and $B \subseteq A$ }[4].

Theorem 2.1 ([4]). Let (X,M) be an r-FMS and A, $B \in I^X$. Then the following properties hold:

(1) $mI(A,r) \subseteq A$ and if A is a fuzzy *r*-minimal open set, then mI(A,r)=A.

(2) $A \subseteq \mathrm{mC}(A,r)$ and if A is a fuzzy r-minimal closed set, then $\mathrm{mC}(A,r)=A$.

(3) If $A \subseteq B$, then mI(A,r) \subseteq mI(B,r) and mC(A,r) \subseteq mC(B,r).

(4) $\operatorname{mI}(A \cap B, r) \subseteq \operatorname{mI}(A, r) \cap \operatorname{mI}(B, r)$ and $\operatorname{mC}(A, r) \cup \operatorname{mC}(B, r) \subseteq \operatorname{mC}(A \cup B, r)$.

(5) mI(mI(A,r),r)=mI(A,r) and mC(mC(A,r),r)=mC(A,r).

(6) $\tilde{1}$ -mC(A,r)=mI($\tilde{1}$ -A,r) and $\tilde{1}$ -mI(A,r)=mC($\tilde{1}$ -A,r).

Definition 2.2 ([4]). Let (X,M) and (Y,N) be r-*FMS's*. Then $f: X \to Y$ is said to be *fuzzy* r-*M* con-*tinuous* function if for every $A \in N_r$, $f^{-1}(A)$ is in M_r .

Theorem 2.3 ([4]). Let $f: X \to Y$ be a function on r-*FMS's* (X,M) and (Y,N). (1) f is fuzzy r-M continuous. (2) $f^{-1}(B)$ is a fuzzy r-minimal closed set, for each fuzzy r-minimal closed set B in Y.

(3) $f(\mathrm{mC}(A,r)) \subseteq \mathrm{mC}(f(A),r)$ for $A \in I^X$.

- (4) $\text{mC}(f^{-1}(B),r) \subseteq f^{-1}(\text{mC}(B,r))$ for $B \in I^{Y}$.
- (5) $f^{-1}(\mathrm{mI}(B,r)) \subseteq \mathrm{mI}(f^{-1}(B),r)$ for $B \in I^{Y}$.

Then (1) \Leftrightarrow (2) \Rightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5).

3. Fuzzy r-minmal preopen sets and fuzzy r-*M* precontinuity

Definition 3.1. Let (X,M) be an r-FMS and $A \in I^X$. Then a fuzzy set A is called a *fuzzy* r-minimal preopen set in X if $A \subseteq mI(mC(A, r), r)$.

A fuzzy set A is called a *fuzzy* r-*minimal spre*closed set if the complement of A is fuzzy r-minimal preopen.

Every fuzzy r-minimal open set is fuzzy r-minimal preopen but the converse may not be true in general.

Example 3.2 Let X=[0,1], let A, B and C be fuzzy sets defined as follows

$$A(x) = \frac{1}{2}(x+1), \quad x \in I;$$

$$B(x) = -\frac{3}{4}(x-1), \quad x \in I;$$

$$C(x) = \frac{1}{5}(x+4), \quad x \in I.$$

Let us consider a fuzzy minimal structure M as follows

$$M(\mu) = \begin{cases} \frac{2}{3}, & \text{if } \mu = \tilde{0}, \tilde{1}, A, B, \\ 0, & otherwise . \end{cases}$$

Then the fuzzy set C is fuzzy $\frac{2}{3}$ -minimal preopen but not fuzzy $\frac{2}{3}$ -minimal open.

Lemma 3.3. Let (X,M) be an r-FMS and $A \in I^X$. Then a fuzzy set A is fuzzy r-minimal preclosed set if and only if $mC(mI(A,r),r) \subseteq A$.

Theorem 3.4. Let (X,M) be an r-FMS. Any union of fuzzy r-minimal preopen sets is fuzzy r-minimal preopen.

Proof. Let A_i be a fuzzy r-minimal preopen set for $i \in J$. Then from Theorem 2.1, $A_i \subseteq mI(mC(A_i,r),r) \subseteq mI(mC(\cup A_i,r),r)$. This implies $\bigcup A_i \subseteq mI(mC(\cup A_i,r),r)$, r) and so $\bigcup A_i$ is fuzzy r-minimal preopen.

As shown in the next example, in general, the intersection of two fuzzy r-minimal preopen sets may not be fuzzy r-minimal preopen.

Example 3.5. Let X=[0,1], let *C*, *D*, *E* and *F*, be fuzzy sets defined as follows

$$C(x) = \frac{1}{3}x + \frac{1}{2},$$
 if $x \in I$;

$$D(x) = -\frac{1}{3}(x-1) + \frac{1}{2}, \quad \text{if } x \in I;$$

$$E(x) = \begin{cases} -x + \frac{1}{2}, & \text{if } 0 \le x \le \frac{1}{4} \\ \frac{1}{3}(x-1) + \frac{1}{2}, & \text{if } \frac{1}{4} \le x \le 1; \end{cases}$$

$$F(x) = \begin{cases} \frac{1}{3}x + \frac{1}{2}, & \text{if } 0 \le x \le \frac{3}{4}, \\ -x + \frac{3}{2}, & \text{if } \frac{3}{4} \le x \le 1. \end{cases}$$

Let us consider a fuzzy minimal structure

$$N(\mu) = \begin{cases} \frac{2}{3}, & \text{if } \mu = \tilde{0}, \tilde{1}, E, F, \\ 0, & otherwise \end{cases}$$

Then the fuzzy sets C and D are fuzzy $\frac{2}{3}$ -minimal preopen. But $C \cap D$ is not fuzzy $\frac{2}{3}$ -minimal preopen, because of mI(mC($C \cap D, \frac{2}{3}), \frac{2}{3}$)= $E \cup F \subseteq C$, D but $E \cup F \neq C$, D.

Definition 3.6. Let (X,M) be an r-FMS and $A \in I^X$, mpC(A, r) and mpI(A, r), respectively, are defined as the following:

 $mpC(A, r) = \bigcap \{F \in I^X: A \subseteq F \text{ and } F \text{ is fuzzy} \\ r - \text{minimal preclosed}\},$ $mpI(A, r) = \bigcup \{U \in I^X: U \subseteq A \text{ and } U \text{ is fuzzy} \}$

r-minimal preopen}.

Theorem 3.7. Let (X,M) be an r-FMS and $A \in I^X$. Then

(1) $mpI(A,r) \subseteq A$. (2) If $A \subseteq B$, then $mpI(A,r) \subseteq mpI(B,r)$.

(3) A is fuzzy r-minimal preopen if and only if mpI (A,r)=A.

(4) mpI(mpI(A,r),r)=mpI(A,r).

(5) $\operatorname{mpC}(\overline{1}-A,r)=\overline{1}-\operatorname{mpI}(A,r)$ and $\operatorname{mpI}(\overline{1}-A,r)=\overline{1}-\operatorname{mpC}(A,r).$

Proof. (1), (2), (3) and (4) are obviously obtained from Theorem 3.4.

(5) For $A \in I^X$,

- $\widehat{1} mpI(A, r)$ = $\widehat{1} - \bigcup \{ U \in I^X : U \subseteq A \text{ and } U \text{ is fuzzy } r - minimal preopen} \}$
 - $= \cap \{\tilde{1} U : U \subseteq A, U \text{ is fuzzy } r \text{minimal } preopen\}$

 $= \cap \{\tilde{1} - U : \tilde{1} - A \subseteq \tilde{1} - U, U \text{ is fuzzy } r - \text{minimal} \\ \text{preopen} \}$ $= \text{mpC}(\tilde{1} - A, r).$

Similarly, $mpI(\tilde{1}-A,r)=\tilde{1}-mpC(A,r)$.

Theorem 3.8. Let (X,M) be an r-FMS and $A \in I^X$. Then

A ⊆ mpC(A,r).
 If A ⊆ B, then mpC(A,r) ⊆ mpC(B,r).
 F is fuzzy r-minimal preclosed if and only if mpC(F)=F.
 mpC(mpC(A,r),r)=mpC(A,r).

Proof. It is obvious from Theorem 3.7.

Lemma 3.9. Let (X,M) be an r-FMS and $A \in I^X$. Then

(1) x_α∈mpC(A,r) if and only if A ∩ V≠Ø for every fuzzy r-minimal preopen set V containing x_α.
(2) x_α∈mpI(A,r) if and only if there exists a fuzzy

r-minimal preopen set G such that $G \subseteq A$.

Proof. (1) If there is a fuzzy r-minimal preopen set V containing x_{α} such that $A \cap V = \emptyset$, then $\tilde{1} - V$ is a fuzzy r-minimal preclosed set such that $A \subseteq \tilde{1} - V$, $x_{\alpha} \notin \tilde{1} - V$. So $x_{\alpha} \notin \text{mpC}(A, r)$.

The other relation is obvious.

(2) Obvious.

Definition 3.10. Let (X,M) and (Y,N) be r-FMS's. Then $f: X \to Y$ is said to be *fuzzy* r-M preicontinuous if for each fuzzy point x_{α} and each fuzzy r-minimal open set V containing $f(x_{\alpha})$, there exists a fuzzy r-minimal preopen set U containing x_{α} such that $f(U) \subseteq V$.

Every fuzzy r-M continuous mapping is fuzzy r-M precontinuous but the converse is not true in general.

Example 3.11. Let X=[0,1]. Consider two fuzzy minimal structures (X,M) and (X,N) defined in Example 3.2 and Example 3.5, respectively. Then the identity mapping $f:(X,N) \to (X,M)$ is fuzzy $\frac{2}{3}-M$ precontinuous but not fuzzy $\frac{2}{3}-M$ continuous.

Theorem 3.12. Let $f: X \to Y$ be a mapping on fuzzy *r*-minimal spaces (X, M) and (Y, N). Then the following are equivalent:

(1) f is fuzzy r-M precontinuous.

(2) $f^{-1}(V)$ is a fuzzy *r*-minimal precopen set for each fuzzy *r*-minimal open set *V* in *Y*.

(3) $f^{-1}(B)$ is a fuzzy *r*-minimal precclosed set for each fuzzy *r*-minimal closed set *B* in *Y*. (4) $f(\operatorname{mpC}(A,r)) \subseteq \operatorname{mC}(f(A),r)$ for $A \in I^X$. (5) $\operatorname{mpC}(f^{-1}(B),r) \subseteq f^{-1}(\operatorname{mC}(B,r))$ for $B \in I^Y$. (6) $f^{-1}(\operatorname{mI}(B,r)) \subseteq \operatorname{mpI}(f^{-1}(B),r)$ for $B \in I^Y$.

Proof. (1) \Rightarrow (2) Let V be any fuzzy r-minimal open set in Y and $x_{\alpha} \in f^{-1}(V)$. Then there exists a fuzzy r -minimal precopen set U containing x_{α} such that f(U) $\subseteq V$ and so $U \subseteq f^{-1}(V)$ for all $x_{\alpha} \in f^{-1}(V)$. Hence from Theorem 3.4, $f^{-1}(V)$ is fuzzy r-minimal precopen.

(2) \Rightarrow (3) Obvious. (3) \Rightarrow (4) For $A \in I^X$, $f^{-1}(\operatorname{mC}(f(A,r)))$ $=f^{-1}(\cap \{F \in I^Y: f(A) \subseteq F \text{ and } F \text{ is a fuzzy}$ $r - \text{minimal closed set}\})$ $= \cap \{f^{-1}(F) \subseteq I^X: A \subseteq f^{-1}(F) \text{ and } F \text{ is a fuzzy}\}$

 $= \cap \{ f^{-1}(F) \in I^X: A \subseteq f^{-1}(F) \text{ and } F \text{ is a fuzzy} \\ r\text{-minimal precclosed set} \}$

 $\supseteq \cap \{K \in I^X: A \subseteq K \text{ and } K \text{ is a fuzzy } r \text{-minimal}$ precclosed set} =mpC(A,r)

Therefore, $f(mpC(A,r)) \subseteq mC(f(A),r)$.

(4) \Rightarrow (5) For $B \in I^{Y}$, $f(\operatorname{mpC}(f^{-1}(B),r)) \subseteq \operatorname{mC}(f(f^{-1}(B)),r) \subseteq \operatorname{mC}(B,r)$. Thus this implies $\operatorname{mpC}(f^{-1}(B),r) \subseteq f^{-1}(\operatorname{mC}(B,r))$.

$$\begin{aligned} (5) &\Rightarrow (6) \text{ For } B \in I^{Y}, \text{ from Theorem 3.7,} \\ f^{-1}(\mathrm{mI}(B,r)) = f^{-1}(\tilde{1} - \mathrm{mC}(\tilde{1} - B,r)) \\ &= \tilde{1} - (f^{-1}(\mathrm{mC}(\tilde{1} - B),r)) \\ &\subseteq \tilde{1} - \mathrm{mpC}(f^{-1}(\tilde{1} - B)) \\ &= \mathrm{mpI}(f^{-1}(B),r). \end{aligned}$$
 Hence $f^{-1}(\mathrm{mI}(B,r)) \subseteq \mathrm{mpI}(f^{-1}(B),r).$

 $(6) \Rightarrow (1)$ Let V be any fuzzy r-minimal open set containing $f(x_\alpha)$ for a fuzzy point $x_\alpha.$ From (6), it follows

$$x_{\alpha} \in f^{-1}(V) = f^{-1}(\text{mI}(V,r)) \subseteq \text{mpI}(f^{-1}(V),r).$$

Since $x_{\alpha} \in mpI(f^{-1}(V), r)$, there exists a fuzzy r-minimal precopen set U containing x_{α} such that $U \subseteq f^{-1}(V)$. Hence f is fuzzy r - M precontinuous.

Lemma 3.13. Let (X,M) be an r-FMS and $A \in I^X$. Then

(1) $mC(mI(A,r),r) \subseteq mC(mI(mpC(A,r),r),r) \subseteq mpC(A,r).$ (2) $mpI(A,r) \subseteq mI(mC(mpI(A,r),r),r) \subseteq mI(mC(A,r),r).$

Proof. (1) Since $A \subseteq mpC(A,r)$ and mpC(A,r) is fuzzy *r*-minimal preclosed, it is obtained from Lemma 3.3 and Theorem 3.8. (2) Similarly, it follows from Theorem 3.7.

Theorem 3.14. Let $f: X \to Y$ be a mapping on r-FMS's (X,M) and (Y,N). Then the following statements are equivalent:

(1) f is fuzzy r-M precontinuous. (2) $f^{-1}(V) \subseteq \mathrm{mI}(\mathrm{mC}(f^{-1}(V),r),r)$ for each fuzzy r-minimal open set V in Y. (3) $\mathrm{mC}(\mathrm{mI}(f^{-1}(F),r),r) \subseteq f^{-1}(F)$ for each fuzzy r-minimal closed set F in Y. (4) $f(\mathrm{mC}(\mathrm{mI}(A,r),r)) \subseteq \mathrm{mC}(f(A),r)$ for $A \in I^X$. (5) $\mathrm{mC}(\mathrm{mI}(f^{-1}(B),r),r) \subseteq f^{-1}(\mathrm{mC}(B,r))$ for $B \in I^Y$.

(6) $f^{-1}(\mathrm{mI}(B,r)) \subseteq \mathrm{mI}(\mathrm{mC}(f^{-1}(B),r),r)$ for $B \in I^{Y}$.

Proof. (1) \Leftrightarrow (2) It is obtained from definition of fuzzy *r*-minimal preopen sets and Theorem 3.12.

(1) \Leftrightarrow (3) It follows from Lemma 3.3 and Theorem 3.12.

(3) \Rightarrow (4) Let $A \in I^X$. Then from Lemma 3.13(1) and hypothesis, it follows mC(mI(A,r),r) \subseteq mpC(A,r) $\subseteq f^{-1}(f(\text{mpC}(A,r))) \subseteq f^{-1}(\text{mC}(f(A),r))$.

Hence $f(\mathrm{mC}(\mathrm{mI}(A,r),r)) \subseteq \mathrm{mC}(f(A),r)$.

 $\begin{array}{l} (4) \Rightarrow (5) \text{ Obvious.} \\ (5) \Rightarrow (6) \text{ Let } B \in I^Y. \text{ Then from Theorem 2.1,} \\ f^{-1}(\mathrm{mI}(B,r)) = f^{-1}(\tilde{1} - \mathrm{mC}(\tilde{1} - B,r)) \\ & = \tilde{1} - (f^{-1}(\mathrm{mC}(\tilde{1} - B,r))) \\ & \subseteq \tilde{1} - \mathrm{mC}(\mathrm{mI}(f^{-1}(\tilde{1} - B),r),r) \\ & = \mathrm{mI}(\mathrm{mC}(f^{-1}(B),r),r). \\ \end{array}$ Hence (6) is obtained.

(6) \Rightarrow (1) Let *V* be any fuzzy *r*-minimal open set. Then since *V*=mI(*V*,*r*), by (6), we have $f^{-1}(V)=f^{-1}(mI(V,r)) \subseteq mI(mC(f^{-1}(V),r),r)$. By Theorem 3.7 (3), $f^{-1}(V)$ is fuzzy *r*-minimal preopen and so *f* is fuzzy *r*-*M* precontinuous.

References

- [1] C L. Chang, "Fuzzy topological spaces", J. Math. Anal. Appl., vol. 24, pp. 182–190, 1968.
- [2] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, "Gradation of openness: Fuzzy topology", *Fuzzy Sets and Systems*, vol. 49, pp. 237–242, 1992.
- [3] A. A. Ramadan, "Smooth topological spaces", *Fuzzy Sets and Systems*, vol. 48, pp. 371–375, 1992.
- [4] Y. H. Yoo, W. K. Min and J. I. Kim. "Fuzzy r -Minimal Structures and Fuzzy r-Minimal Spaces", Far East Journal of Mathematical Sciences, vol. 33, no. 2, pp.193–205, 2009.

[5] L. A. Zadeh, "Fuzzy sets", *Information and Control*, pp. 338–353, 1965.

저 자 소 개

Won Keun Min

Department of Mathematics, Kangwon National University, Chuncheon, 200–701, Korea wkmin@kangwon.ac.kr

Young Key Kim

Department of Mathematics, MyongJi University, Youngin 449–728, Korea. ykkim@mju.ac.kr