References
- Chen, B.-C.; Bendarz, M. S.; Zhao, R.; Sundeen, J. E.; Chen,P.; Shen, Z.; Skoumbourdis, A. P.; Barrish, J. C. Tetrahedron Lett.2000, 41, 5453. https://doi.org/10.1016/S0040-4039(00)00910-2
- Kobayashi, K.; Nagato, S.; Kawakita, M.; Morikawa, O.; Konishi, H. Chem. Lett. 1995, 575.
- Jackson, A.; Meth-Cohn, O. J. Chem. Soc., Chem. Commun. 1995, 1319.
- Downie, I. M.; Earle, M. J.; Heaney, H.; Shuhaibar, K. F. Tetrahedron 1993, 49, 4015. https://doi.org/10.1016/S0040-4020(01)89915-4
- Kobayashi, S.; Nishio, K. J. Org. Chem. 1994, 56, 6620.
- Kobayashi, S.; Yasuda, M.; Hachiya, I. Chem. Lett. 1996, 407.
- Green, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 4th ed.; Wiley Interscience: New York, 2007.
- Martinez, J.; Laur, J. Synthesis 1982, 979.
- Waki, J.; Meinhofer, J. J. Org. Chem. 1977, 42, 2019. https://doi.org/10.1021/jo00431a046
- Chen, F. M. F.; Benoiton, N. L. Synthesis 1979, 709.
- Luca, L. D.; Giacomelli, G.; Porcheddu, A.; Salaris, M. Synlett 2004, 2570.
- Das, B.; Krishnaiah, K.; Balasubramanyam, P.; Veeranjaneyulu, B.; Kumar, D. N. Tetrahedeon Lett. 2008, 49, 2225. https://doi.org/10.1016/j.tetlet.2008.02.050
- Shekhar, A. C.; Kumar, A. R.; Sathaiah, G.; Paul, L.; Sridhar,M.; Rao, P. S. Tetrahedron Lett. 2009, 50, 7099. https://doi.org/10.1016/j.tetlet.2009.10.006
- Hosseini-Sarvari, M.; Sharghi, H. J. Org. Chem. 2006, 71, 6652. https://doi.org/10.1021/jo060847z
- Strazzolini, P.; Giumanini, A. G.; Cauci, S. Tetrahedron 1990, 46, 1081. https://doi.org/10.1016/S0040-4020(01)86676-X
- Sheehan, J. C.; Yang, D. D. H. J. Am. Chem. Soc. 1958, 80, 1154. https://doi.org/10.1021/ja01538a036
- Hill, D. R.; Hsiao, C.-N.; Kurukulasuriya, R.; Wittenberger, S. J. Org. Lett. 2002, 4, 111. https://doi.org/10.1021/ol016976d
- Kisfaludy, L.; Otvos, L., Jr. Synthesis 1987, 510.
- Duczek, W.; Deutsch, J.; Vieth, S.; Niclas, H.-J. Synthesis 1996, 37.
- Reddy, P. G.; Kumar, G. D. K.; Baskaran, S. Tetrahedron Lett. 2000, 41, 9149. https://doi.org/10.1016/S0040-4039(00)01636-1
- Desai, B.; Danks, T. N.; Wagner, G. Tetrahedron Lett. 2005, 955.
- Kim, J.-G.; Jang, D. O. Tetrahedron Lett. 2009, 50, 2688. https://doi.org/10.1016/j.tetlet.2009.03.143
- Kim, J.-G.; Jang, D. O. Synlett 2007, 2501.
- Jang, D. O.; Moon, K. S.; Cho, D. H.; Kim, J.-G. Tetrahedron Lett. 2006, 47, 6063. https://doi.org/10.1016/j.tetlet.2006.06.099
- Munbunjong, W.; Lee, E. H.; Chavasiri, W.; Jang, D. O. Tetrahedron Lett. 2005, 46, 8769.
- Cho, D. H.; Jang, D. O. Tetrahedron Lett. 2004, 45, 2285. https://doi.org/10.1016/j.tetlet.2004.01.114
- Cho, D. H.; Kim, J. G.; Jang, D. O. Bull. Korean Chem. Soc. 2003, 24, 155. https://doi.org/10.5012/bkcs.2003.24.2.155
- Jang, D. O.; Cho, D. H. Synlett 2002, 631.
- Mihara, M.; Nakai, T.; Iwai, T.; Ito, T.; Ohno, T.; Mizuno, T. Synlett 2010, 253.
- Sarvari, M. H.; Sharghi, H. J. Org. Chem. 2004, 69, 6953. https://doi.org/10.1021/jo0494477
- Chakraborti, A. K.; Gulhane, R. Tetrahedron Lett. 2003, 44, 6749. https://doi.org/10.1016/S0040-4039(03)01641-1
- Chakraborti, A. K.; Gulhane, R. Chem. Commun. 2003, 1896.
- Jung, S. H.; Ahn, J. H.; Park, S. K.; Choi, J.-K. Bull. Korean Chem. Soc. 2002, 23, 149. https://doi.org/10.5012/bkcs.2002.23.1.149
- Kim, J.-G.; Jang, D. O. Synlett 2010, 1231.
- Floresheimer, A.; Kula, M. R. Monatsh. Chem. 1988, 119, 1323. https://doi.org/10.1007/BF00808313
- Geiger, R.; Siedel, W. Chem. Ber. 1969, 102, 2487. https://doi.org/10.1002/cber.19691020740
- Ugi, I.; Fetzer, U.; Eholzer, U.; Knupfer, H.; Offerman, K. Angew. Chem., Int. Ed. Engl. 1965, 4, 472. https://doi.org/10.1002/anie.196504721
- Qiu, P.; Persson, D.; Leygraf, C. J. Electrochem. Soc. 2009, 156, C441. https://doi.org/10.1149/1.3240878
- Chung, B. Y.; Maeng, C. O.; Kim, Y. H. J. Korean Chem. Soc. 1982, 26, 43.
Cited by
- ChemInform Abstract: Solvent-Free Zinc-Catalyzed Amine N-Formylation. vol.42, pp.11, 2011, https://doi.org/10.1002/chin.201111069
- Metal exchanged heteropolytungstate: an efficient catalyst for the synthesis of formylated amines vol.112, pp.2, 2014, https://doi.org/10.1007/s11144-014-0702-6
- Catalytic amide formation from non-activated carboxylic acids and amines vol.43, pp.8, 2014, https://doi.org/10.1039/C3CS60345H
- Transformylating amine with DMF to formamide over CeO2 catalyst vol.50, pp.19, 2014, https://doi.org/10.1039/c3cc48400a
- Plant-mediated green synthesis of ZnO nanoparticles using Garcinia gummi-gutta seed extract: Photoluminescence, screening of their catalytic activity in antioxidant, formylation and biodiesel production vol.132, pp.8, 2017, https://doi.org/10.1140/epjp/i2017-11627-1
- Co3O4 nanoparticles prepared by oxidative precipitation method: an efficient and reusable heterogeneous catalyst for N-formylation of amines vol.43, pp.1, 2017, https://doi.org/10.1007/s11164-016-2631-7
- Biosynthesised ZnO : Dy3+ nanoparticles: Biodiesel properties and reusable catalyst for N-formylation of aromatic amines with formic acid vol.133, pp.4, 2018, https://doi.org/10.1140/epjp/i2018-11963-6
- Synthesis and Leishmanicidal Activity of Novel Urea, Thiourea, and Selenourea Derivatives of Diselenides vol.63, pp.5, 2010, https://doi.org/10.1128/aac.02200-18
- Recent advances in N-formylation of amines and nitroarenes using efficient (nano)catalysts in eco-friendly media vol.21, pp.19, 2019, https://doi.org/10.1039/c9gc01822k
- Synthesis of benzimidazolones via CO2 fixation and N-phenyl formamides using formic acid in presence of zinc embedded polymer complex vol.44, pp.29, 2010, https://doi.org/10.1039/d0nj01363c