DOI QR코드

DOI QR Code

Simultaneous Determination of Cd2+, Pb2+, Cu2+ and Hg2+ at a Carbon Paste Electrode Modified with Ionic Liquid-functionalized Ordered Mesoporous Silica

  • Zhang, Penghui (College of Sciences, Xi'an University of Architecture and Technology) ;
  • Dong, Sheying (College of Sciences, Xi'an University of Architecture and Technology) ;
  • Gu, Guangzhe (College of Sciences, Xi'an University of Architecture and Technology) ;
  • Huang, Tinglin (College of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology)
  • Received : 2010.07.17
  • Accepted : 2010.09.01
  • Published : 2010.10.20

Abstract

Ionic liquid-functionalized ordered mesoporous silica SBA-15 modified carbon paste electrode (CISPE) was fabricated and its electrochemical performance was investigated by cyclic voltammetry, electrochemical impedance spectra. The electrochemical behavior of $Cd^{2+}$, $Pb^{2+}$, $Cu^{2+}$ and $Hg^{2+}$ at CISPE was studied by differential pulse anodic stripping voltammetry (DPASV). Compared with carbon paste electrode, the stripping peak currents had a significant increase at CISPE. Under the optimized conditions, the detection limits were $8.0{\times}10^{-8}\;M$ ($Cd^{2+}$), $4.0{\times}10^{-8}\;M$ ($Pb^{2+}$), $6.0{\times}10^{-8}\;M$ ($Cu^{2+}$), $1.0{\times}10^{-8}\;M$ ($Hg^{2+}$), respectively. Furthermore, the present method was applied to the determination of $Cd^{2+}$, $Pb^{2+}$, $Cu^{2+}$ and $Hg^{2+}$ in water samples and people hair sample.

Keywords

References

  1. Darwish, I. A.; Blake, D. A. Anal. Chem. 2002, 74, 52. https://doi.org/10.1021/ac010510r
  2. Vogl, J.; Heumann, K. G. Fresenius' J. Anal. Chem. 1997, 359, 438. https://doi.org/10.1007/s002160050606
  3. Dariusz, W.; Barbara, H. Appl. Radiat. Isot. 1993, 44, 1101. https://doi.org/10.1016/0969-8043(93)90113-O
  4. Fernando, B.; Francisco, J. K.; Eder, C. L. Spectrochim. Acta, Part B 1999, 54, 1155. https://doi.org/10.1016/S0584-8547(99)00055-5
  5. Shams, E.; Babaei, A.; Soltaninezhad, M. Anal. Chim. Acta 2004, 501, 119. https://doi.org/10.1016/j.aca.2003.09.010
  6. Ali, A.; Ensafi, T.; Khayamian, S.; Khaloo, S. Anal. Chim. Acta 2004, 505, 201. https://doi.org/10.1016/j.aca.2003.10.079
  7. Wang, J.; Lu, J.; Hocevar, S. B.; Farias, P. A. M. Anal. Chem. 2000, 72, 3218. https://doi.org/10.1021/ac000108x
  8. Li, J.; Guo, S. J.; Zhai, Y. M.; Wang, E. K. Anal. Chim. Acta 2009, 649, 196. https://doi.org/10.1016/j.aca.2009.07.030
  9. Zhang, X. H.; Wang, S. F. Sens. Actuators, B 2005, 104, 29. https://doi.org/10.1016/j.snb.2004.04.095
  10. Ostrega, B. K.; Piekarska, J. Electroanalysis 2005, 17, 815. https://doi.org/10.1002/elan.200403158
  11. Hu, C.; Wu, K.; Dai, X.; Hu, S. Talanta 2003, 60, 17. https://doi.org/10.1016/S0039-9140(03)00116-4
  12. Gabriela, R. M.; Ramirez-Silva, M. T.; Gonzalez, R. L.; Galicia, L.; Romero-Romo, M. Electroanalysis 2005, 17, 694. https://doi.org/10.1002/elan.200403099
  13. Li, Y. H.; Liu, X. Y.; Zeng, X. D.; Liu, Y.; Liu, X. T.; Wei, W. Z.; Luo, S. L. Sens. Actuators, B 2009, 139, 604. https://doi.org/10.1016/j.snb.2009.03.045
  14. Yuan, S.; Chen, W. H.; Hu, S. S. Talanta 2004, 64, 922. https://doi.org/10.1016/j.talanta.2004.04.008
  15. Zheng, H.; Yan, Z. N.; Dong, H. M.; Ye, B. X. Sens. Actuators, B 2007, 120, 603. https://doi.org/10.1016/j.snb.2006.03.032
  16. Albertusa, F.; Llerenaa, A.; Alpizara, J.; Cerdab, V.; Luquec, M.; Riosc, A.; Valcarcel, M. Anal. Chim. Acta 1997, 355, 23. https://doi.org/10.1016/S0003-2670(97)81608-X
  17. Zhang, S. H.; Wu, K. B.; Hu, S. S. Anal. Sci. 2002, 18, 1089. https://doi.org/10.2116/analsci.18.1089
  18. Shahrokhian, S.; Fotouhi, L. Sens. Actuators, B 2007, 123, 942. https://doi.org/10.1016/j.snb.2006.10.053
  19. Mashhadizadeh, M. H.; Khani, H. Anal. Methods 2010, 2, 24. https://doi.org/10.1039/b9ay00103d
  20. Christabel, E. F.; Burkett, S. L.; Mann, S. Chem. Commun. 1997, 18, 1769.
  21. Lim, M. H.; Blanford, C. F.; Stein, A. J. Am. Chem. Soc. 1997, 119, 4090. https://doi.org/10.1021/ja9638824
  22. Bambrough, C. M.; Slade, R. C. T.; Williams, R. T. J. Mater. Chem. 1998, 8, 569. https://doi.org/10.1039/a706328h
  23. Benhamou, A.; Baudu, M.; Derriche, Z.; Basly, J. P. J. Hazard. Mater. 2009, 171, 1001. https://doi.org/10.1016/j.jhazmat.2009.06.106
  24. Algarra, M.; Jimenez, M. V.; Castellon, E. R.; Lopez, A. J.; Jimenez, J. Chemosphere 2005, 59, 779. https://doi.org/10.1016/j.chemosphere.2004.11.023
  25. Cesarino, I.; Cavalheiro, E. T. G.; Brett, C. M. A. Electroanalysis 2010, 22, 61. https://doi.org/10.1002/elan.200900167
  26. Cesarino, I.; Marino, G.; Matos, J. R.; Cavalheiro, T. G. Talanta 2008, 75, 15. https://doi.org/10.1016/j.talanta.2007.06.032
  27. Liu, H. T.; He, P.; Sun, C. Y.; Shi, L. Y.; Zhu, G. Y.; Li, J. Y. Electrochem. Commun. 2005, 7, 1357. https://doi.org/10.1016/j.elecom.2005.09.018
  28. Liu, Y.; Peng, J. J.; Zhai, S. R.; Li, J. Y.; Mao, J. J.; Li, M. J.; Qiu, H. Y.; Lai, G. Q. Eur. J. Inorg. Chem. 2006, 15, 2947.
  29. Randles, J. E. B. Discuss. Faraday Soc. 1947, 1, 11. https://doi.org/10.1039/df9470100011
  30. Maleki, N.; Safavi, A.; Rajabadi, F. Anal. Chem. 2006, 78, 3820. https://doi.org/10.1021/ac060070+
  31. Zhang, J. P.; Chen, X. M. Chem. Commun. 2006, 16, 1689.
  32. Lv, L.; Hor, M. P.; Su, F. B.; Zhao, X. S. J. Colloid Interface Sci. 2005, 287, 178. https://doi.org/10.1016/j.jcis.2005.01.073
  33. Staden, J. F.; Matoetoe, M. C. Anal. Chim. Acta 2000, 411, 201. https://doi.org/10.1016/S0003-2670(00)00785-6

Cited by

  1. Simultaneous determination of catechol and hydroquinone by carbon paste electrode modified with hydrophobic ionic liquid-functionalized SBA-15 vol.16, pp.12, 2012, https://doi.org/10.1007/s10008-012-1805-5
  2. The Use of Voltammetry for Sorption Studies of Pb2+ from Aqueous Media using Schiff Base Immobilized Biologic Polymer Material vol.224, pp.3, 2013, https://doi.org/10.1007/s11270-013-1474-8
  3. Recent advances in graphite powder-based electrodes vol.405, pp.11, 2013, https://doi.org/10.1007/s00216-013-6816-2
  4. Mesoporous materials and electrochemistry vol.42, pp.9, 2013, https://doi.org/10.1039/c2cs35322a
  5. Simultaneous determination of trace levels of lead(II) and copper(II) by square wave stripping voltammetry using a glassy carbon electrode modified with hierarchical gold dendrites vol.181, pp.3-4, 2014, https://doi.org/10.1007/s00604-013-1116-2
  6. Nitrogen-Doped Porous Carbon Derived from Metal–Organic Gel for Electrochemical Analysis of Heavy-Metal Ion vol.6, pp.18, 2014, https://doi.org/10.1021/am504367t
  7. Nitrogen-doped carbon nanotubes for sensitive and selective determination of heavy metals vol.5, pp.127, 2015, https://doi.org/10.1039/C5RA15944J
  8. Evaluation of the SBA-15 materials ability to accumulation of 4-chlorophenol on carbon paste electrode vol.22, pp.4-6, 2016, https://doi.org/10.1007/s10450-016-9779-8
  9. 3-Mercaptopropyltrimethoxysilane Modified Diatomite: Preparation and Application for Voltammetric Determination of Lead (II) and Cadmium (II) vol.2017, pp.2090-9071, 2017, https://doi.org/10.1155/2017/9560293
  10. ) detection vol.9, pp.11, 2017, https://doi.org/10.1039/C6AY03414D
  11. Fabrication of Hemoglobin/Ionic Liquid Modified Carbon Paste Electrode Based on the Electrodeposition of Gold Nanoparticles/CdS Quantum Dots and Its Electrochemical Application vol.24, pp.7, 2012, https://doi.org/10.1002/elan.201200092
  12. Construction and Application of an Electrochemical Sensor for Simultaneous Determination of Cd(II), Cu(II) and Hg(II) in Water and Foodstuff Samples vol.26, pp.4, 2014, https://doi.org/10.1002/elan.201300619
  13. Preparation of Highly Dispersed Reduced Graphene Oxide Modified with Carboxymethyl Chitosan for Highly Sensitive Detection of Trace Cu(II) in Water vol.8, pp.4, 2016, https://doi.org/10.3390/polym8040078
  14. Nanocarbon-based Electrochemical Detection of Heavy Metals vol.28, pp.10, 2016, https://doi.org/10.1002/elan.201600173
  15. Nanocomposite Platform Based on EDTA Modified Ppy/SWNTs for the Sensing of Pb(II) Ions by Electrochemical Method vol.6, pp.2296-2646, 2018, https://doi.org/10.3389/fchem.2018.00451
  16. Synthesis of Bismuth‐Nanoparticle‐Enriched Nanoporous Carbon on Graphene for Efficient Electrochemical Analysis of Heavy‐Metal Ions vol.21, pp.32, 2010, https://doi.org/10.1002/chem.201500512
  17. Construction of Modified Carbon Paste Electrode for Highly Sensitive Simultaneous Electrochemical Determination of Trace Amounts of Copper (II) and Cadmium (II) vol.28, pp.2, 2010, https://doi.org/10.1002/elan.201500308
  18. Water-Soluble Perylene Diimide for Highly Sensitive and Repeatable Metal Ion Detection with Novel Logic Gate Operation vol.72, pp.3, 2010, https://doi.org/10.1071/ch18310
  19. Catalytic activity of ratio-dependent SBA-15 supported zirconia catalysts for highly selective oxidation of benzyl alcohol to benzaldehyde and environmental pollutant heavy metal ions detection vol.1176, pp.None, 2019, https://doi.org/10.1016/j.molstruc.2018.09.007
  20. Electrochemical Sensors for Heavy Metals Detection in Gracilaria corticata using Multiwalled Carbon Nanotubes Modified Glassy Carbon Electrode vol.74, pp.3, 2010, https://doi.org/10.1134/s106193481903002x
  21. Amino Acid-Fabricated Glassy Carbon Electrode for Efficient Simultaneous Sensing of Zinc(II), Cadmium(II), Copper(II), and Mercury(II) Ions vol.4, pp.26, 2010, https://doi.org/10.1021/acsomega.9b03189
  22. Picomolar-level detection of mercury within non-biological/biological aqueous media using ultra-sensitive polyaniline-Fe3O4-silver diethyldithiocarbamate nanostructure vol.412, pp.22, 2010, https://doi.org/10.1007/s00216-020-02750-1
  23. Development of tribenzamide functionalized electrochemical sensor for femtomolar level sensing of multiple inorganic water pollutants vol.353, pp.None, 2010, https://doi.org/10.1016/j.electacta.2020.136569