참고문헌
- Rahman, M. M.; Czaun, M.; Takafuji, M.; Ihara, H. Chem. Eur. J. 2008, 14, 1312-1321. https://doi.org/10.1002/chem.200701302
- Nagase, K.; Kobayashi, J.; Kikuchi, A.; Akiyama, Y.; Annaka, M.; Kanazawa, H.; Okano, T. Langmuir 2008, 24, 10981-10987. https://doi.org/10.1021/la801949w
- Idota, N.; Kikuchi, A.; Kobayashi, J.; Akiyama, Y.; Sakai, K.; Okano, T. Langmuir 2006, 22, 425-430. https://doi.org/10.1021/la051968h
- Coad, B. R.; Steels, B. M.; Kizhakkedathu, J. N.; Brooks, D. E.; Haynes, C. A. Biotechnol. Bioengineer. 2007, 97, 574-587. https://doi.org/10.1002/bit.21283
- Nagase, K.; Kobayashi, J.; Kikuchi, A.; Akiyama, Y.; Kanazawa, H.; Okano, T. Langmuir 2008, 24, 511-517. https://doi.org/10.1021/la701839s
- Mallik, A. K.; Rahman, M. M.; Czaun, M.; Takafuji, M.; Ihara, H. J. Chromatogr. A 2008, 1187, 119-127. https://doi.org/10.1016/j.chroma.2008.02.011
- Hemstrom, P.; Szumski, M.; Irgum, K. Anal. Chem. 2006, 78, 7098-7103. https://doi.org/10.1021/ac0602874
- Miller, M. D.; Baker, G. L.; Bruening, M. L. J. Chromatogr. A 2004, 1044, 323-330. https://doi.org/10.1016/j.chroma.2004.04.071
- Yoshikawa, C.; Goto, A.; Tsujii, Y.; Ishizuka, N.; Nakanishi, K.; Fukuda, T. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 4795-4803. https://doi.org/10.1002/pola.22224
- Nagase, K.; Kobayashi, J.; Kikuchi, A.; Akiyama, Y.; Kanazawa, H.; Okano, T. Biomacromolecules 2008, 9, 1340-1347. https://doi.org/10.1021/bm701427m
- Derouet, D.; Thuc, C. N. H. J. Appl. Polym. Sci. 2008, 109, 2113-2127. https://doi.org/10.1002/app.28290
- Fairhurst, R. E.; Chassaing, C.; Venn, R. F.; Mayes, A. G. Biosensors and Bioelectronics 2004, 20, 1098-1105. https://doi.org/10.1016/j.bios.2004.01.020
- Sulitzky, C.; Ruckert, B.; Hall, A. J.; Lanza, F.; Unger, K.; Sellergren, B. Macromolecules 2002, 35, 79-91. https://doi.org/10.1021/ma011303w
- Roohi, F.; Titirici, M. M. New J. Chem. 2008, 32, 1409-1414. https://doi.org/10.1039/b800851e
- Su, S.; Zhang, M.; Li, B.; Zhang, H.; Dong, X. Talanta 2008, 76, 1141-1146. https://doi.org/10.1016/j.talanta.2008.05.015
- Czaun, M.; Rahman, M. M.; Takafuji, M.; Ihara, H. Polymer 2008, 49, 5410-5416. https://doi.org/10.1016/j.polymer.2008.10.017
- Unsal, E.; Elmas, B.; Caglayan, B.; Tuncel, M.; Patir, S.; Tuncel, A. Anal. Chem. 2006, 78, 5868-5875. https://doi.org/10.1021/ac060506l
- Coessens, V.; Pintauer, T.; Matyjaszewski, K. Prog. Polym. Sci. 2001, 26, 337-377. https://doi.org/10.1016/S0079-6700(01)00003-X
- Qiu, K.; Li, P. Chinese J. Polym. Sci. 2004, 22, 99-110.
- Favier, A.; Charreyre, M. Macromol. Rapid Comm. 2006, 27, 653-692. https://doi.org/10.1002/marc.200500839
- Perrier, S.; Takolpuckdee, P. J. Polym. Sci. Pt. A: Polym. Chem. 2005, 43, 5347-5393. https://doi.org/10.1002/pola.20986
- Kim, S. S.; Cheong, W. J. Bull. Korean Chem. Soc. 2009, 30, 722-725. https://doi.org/10.5012/bkcs.2009.30.3.722
- Hwang, D. G.; Zaidi, S. A.; Cheong, W. J. Bull. Korean Chem. Soc. 2009, 30, 3127-3130. https://doi.org/10.5012/bkcs.2009.30.12.3127
- Hwang, D. G.; Zaidi, S. A.; Cheong, W. J. J. Sep. Sci. 2010, 33, 587-593. https://doi.org/10.1002/jssc.200900578
- Ko, J. H.; Baik, Y. S.; Park, S. T.; Cheong, W. J. J. Chromatogr. A 2007, 1144, 269-274. https://doi.org/10.1016/j.chroma.2007.01.086
- Han, K. M.; Cheong, W. J. Bull. Korean Chem. Soc. 2008, 29, 2281-2283. https://doi.org/10.5012/bkcs.2008.29.11.2281
피인용 문헌
- Ground Organic Monolith Particles Having a Large Volume of Macropores as Chromatographic Separation Media vol.35, pp.7, 2014, https://doi.org/10.5012/bkcs.2014.35.7.2033
- -bound porous silica monolith particles as a low-cost high-performance liquid chromatography stationary phase with an excellent chromatographic performance vol.37, pp.23, 2014, https://doi.org/10.1002/jssc.201400811
- Cheap C18-modified Silica Monolith Particles as HPLC Stationary Phase of Good Separation Efficiency vol.36, pp.6, 2015, https://doi.org/10.1002/bkcs.10320
- Production of Raw and Ligand-modified Silica Monolith Particles in an Enhanced Scale and their Application in High Performance Liquid Chromatography vol.38, pp.8, 2017, https://doi.org/10.1002/bkcs.11203
- Ground Organic Monolith Particles as Chromatographic Separation Media vol.34, pp.1, 2010, https://doi.org/10.5012/bkcs.2013.34.1.291
- Immobilization of Styrene-acrylamide Co-polymer on Either Silica Particles or Inner Surface of Silica Capillary for the Separation of D-Glucose Anomers vol.35, pp.2, 2010, https://doi.org/10.5012/bkcs.2014.35.2.539
- Porous Silica Particles As Chromatographic Separation Media: A Review vol.35, pp.12, 2010, https://doi.org/10.5012/bkcs.2014.35.12.3465
- Styrene‐N‐phenylacrylamide co‐polymer modified silica monolith particles with an optimized mixing ratio of monomers as a new stationary phase for the separation of peptides in high p vol.42, pp.16, 2010, https://doi.org/10.1002/jssc.201900215
- An optimized mixed‐mode stationary phase based on silica monolith particles for the separation of peptides and proteins in high‐performance liquid chromatography vol.42, pp.24, 2010, https://doi.org/10.1002/jssc.201900914
- Ground Organic Particles of ca. 3 μm Size as Chromatographic Separation Media in High Performance Liquid Chromatography vol.83, pp.6, 2010, https://doi.org/10.1007/s10337-020-03894-z