DOI QR코드

DOI QR Code

Effect of Alkali Metal Ions on Alkaline Ethanolysis of 2-Pyridyl and 4-Pyridyl Benzoates in Anhydrous Ethanol

  • Lee, Jae-In (Department of Chemistry and Plant Resources Research Institute, Duksung Women's University) ;
  • Kang, Ji-Sun (Department of Chemistry and Plant Resources Research Institute, Duksung Women's University) ;
  • Kim, Song-I (Department of Chemistry and Nano Science, Ewha Woman's University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Woman's University)
  • Received : 2010.08.16
  • Accepted : 2010.08.30
  • Published : 2010.10.20

Abstract

Pseudo-first-order rate constants ($k_{obsd}$) have been measured for nucleophilic substitution reactions of 2-pyridyl benzoate 5 with alkali metal ethoxides (EtOM, M = Li, Na, K) in anhydrous ethanol. The plots of $k_{obsd}$ vs. $[EtOM]_o$ are curved upwardly but linear in the excess presence of 18-crown-6-ether (18C6) with significant decreased $k_{obsd}$ values in the reaction with EtOK. The $k_{obsd}$ value for the reaction of 5 with a given EtONa concentration decreases steeply upon addition of 15-crown-5-ether (15C5) to the reaction medium up to ca. [15C5]/$[EtONa]_o$ = 1, and remains nearly constant thereafter, indicating that $M^+$ ions catalyze the reaction in the absence of the complexing agents. Dissection $k_{obsd}$ into $k_{EtO^-}$- and $k_{EtOM}$, i.e., the second-order rate constants for the reaction with the dissociated $EtO^-$ and the ion-paired EtOM, respectively has revealed that ion-paired EtOM is 3.2 - 4.6 times more reactive than dissociated $EtO^-$. It has been concluded that $M^+$ ions increase the electrophilicity of the reaction center through a 6-membered cyclic transition state. This idea has been examined from the corresponding reactions of 4-pyridyl benzoate 6, which cannot form such a 6-membered cyclic transition state.

Keywords

References

  1. Fersht, A. Enzyme Structure and Mechanism; W. H. Freeman and company: New York, 1985.
  2. Stryer, L. Biochemistry; W. H. Freeman and company: New York, 1988.
  3. Da Silva, J. J. R. F.; Williams, R. J. P. The Biological Chemistry of the Elements; Clarendon Press: Oxford, 1991.
  4. Anslyn, E. V.; Dougherty, D. E. Modern Physical Organic Chemistry; University Science Books: Sausalito, USA, 2006; pp 500-502.
  5. Carroll, F. A. Perspectives on Structure and Mechanism in Organic Chemistry; Brooks/Cole: New York, USA, 1998; p 445.
  6. Page, M. I.; Williams, A. Organic & Bioorganic Mechanisms; Longman: Singapore, 1997; pp 179-183.
  7. Brown, R. S.; Neverov, A. A. Adv. Phys. Org. Chem. 2007, 42, 271-331. https://doi.org/10.1016/S0065-3160(07)42006-8
  8. Davies, A. G. Perkin 1 2000, 1997-2010.
  9. Williams, N. H.; Takasaki, B.; Wall, M.; Chin, J. Acc. Chem. Res. 1999, 32, 485-493. https://doi.org/10.1021/ar9500877
  10. Suh, J. Acc. Chem. Res. 1992, 25, 273-279. https://doi.org/10.1021/ar00019a001
  11. Thatcher, G. R. J.; Kluger, R. Adv. Phys. Org. Chem. 1989, 25, 99-265. https://doi.org/10.1016/S0065-3160(08)60019-2
  12. Breslow, R. Adv. Enzymol. 1986, 58, 1-60.
  13. Chin, J. Acc. Chem. Res. 1991, 24, 145-152. https://doi.org/10.1021/ar00005a004
  14. Fife, T. H.; Chauffe, L. Bioorg. Chem. 2000, 28, 357-373. https://doi.org/10.1006/bioo.2000.1176
  15. Fife, T. H.; Bembi, R. J. Am. Chem. Soc. 1993, 115, 11358-11363. https://doi.org/10.1021/ja00077a039
  16. Fife, T. H.; Pujari, M. P. J. Am. Chem. Soc. 1990, 112, 5551-5557. https://doi.org/10.1021/ja00170a020
  17. Suh, J.; Son, S. J.; Suh, M. P. Inorg. Chem. 1998, 37, 4872-4877. https://doi.org/10.1021/ic980205x
  18. Suh, J.; Kim, N.; Cho, H. S. Bioorg. Med. Chem. Lett. 1994, 4, 1889-1892. https://doi.org/10.1016/S0960-894X(01)80391-7
  19. Liu, C. T.; Neverov, A. A.; Maxwell, C. I.; Brown, R. S. J. Am. Chem. Soc. 2010, 132, 3561-3573. https://doi.org/10.1021/ja910111q
  20. Edwards, D. R.; Tsang, W. Y.; Neverov, A. A.; Brown, R. S. Org. Biomol. Chem. 2010, 84, 822-827.
  21. Brown, R. S.; Lu, Z, L.; Liu, C. T.; Tsang, W. Y.; Edwards, D. R.; Neverov, A. A. J. Phys. Org. Chem. 2010, 23, 1-15.
  22. Mohamed, M. F.; Neverov, A. A.; Brown, R. S. Inorg. Chem. 2009, 48, 11425-11433. https://doi.org/10.1021/ic9015965
  23. Gibson, G. T. T.; Mohamed, M. F.; Neverov, A. A.; Brown, R. S. Inorg. Chem. 2006, 45, 7891-7902. https://doi.org/10.1021/ic060517x
  24. Gibson, G. T. T.; Neverov, A. A.; Teng, A. C.-T.; Brown, R. S. Can. J. Chem. 2005, 83, 1268-1276. https://doi.org/10.1139/v05-065
  25. Pregel, M. J.; Dunn, E. J.; Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Chem. Soc. Rev. 1995, 24, 449-455. https://doi.org/10.1039/cs9952400449
  26. Dunn, E. J.; Buncel, E. Can. J. Chem. 1989, 67, 1440-1448. https://doi.org/10.1139/v89-220
  27. Buncel, E.; Dunn, E. J.; Bannard, R. B.; Purdon, J. G. Chem. Commun. 1984, 162-163.
  28. Koo, I. S.; Ali, D.; Yang, K.; Park, Y.; Esbata, A.; van Loon, G. W.; Buncel, E. Can. J. Chem. 2009, 87, 433-439. https://doi.org/10.1139/V08-178
  29. Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2005, 3, 1468-1475. https://doi.org/10.1039/b501537e
  30. Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2004, 2, 601-610. https://doi.org/10.1039/b314886f
  31. Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Org. Biomol. Chem. 2003, 1, 163-167. https://doi.org/10.1039/b208408b
  32. Buncel, E.; Nagelkerke, R.; Thatcher, G. R. J. Can. J. Chem. 2003, 81, 53-63. https://doi.org/10.1139/v02-202
  33. Pregel, M. J.; Dunn, E. J.; Buncel, E. J. Am. Chem. Soc. 1991, 113, 3545-3550. https://doi.org/10.1021/ja00009a049
  34. Pregel, M. J.; Buncel, E. J. Org. Chem. 1991, 56, 5583-5588. https://doi.org/10.1021/jo00019a022
  35. Um, I. H.; Shin, Y. H.; Lee, S. E.; Yang, K.; Buncel, E. J. Org. Chem. 2008, 73, 923-930. https://doi.org/10.1021/jo702138h
  36. Um, I. H.; Jeon, S. E.; Baek, M. H.; Park, H. R. Chem. Commun. 2003, 3016-3017.
  37. Hong, Y. J.; Kim, S. I.; Um, I. H. Bull. Korean Chem. Soc. 2010, 31, in press.
  38. Seo, J. A.; Kim, S. I.; Hong, Y. J.; Um, I. H. Bull. Korean Chem. Soc. 2010, 31, 303-308. https://doi.org/10.5012/bkcs.2010.31.02.303
  39. Um, I. H.; Lee, S. E.; Park, J. E. Bull. Korean Chem. Soc. 2008, 29, 1295-1296. https://doi.org/10.5012/bkcs.2008.29.7.1295
  40. Um, I. H.; Lee, S. E.; Hong, Y. J.; Park, J. E. Bull. Korean Chem. Soc. 2008, 29, 117-121. https://doi.org/10.5012/bkcs.2008.29.1.117
  41. Mentz, M.; Modro, A. M.; Modro, T. A. Can. J. Chem. 1994, 72, 1933-1936. https://doi.org/10.1139/v94-246
  42. Mentz, M.; Modro, T. A. J. Chem. Soc. Perkin Trans. 2 1995, 2227-2229.
  43. Albanese, D.; Landini, D.; Maia, A. J. Org. Chem. 2001, 66, 3249-3252. https://doi.org/10.1021/jo0056388
  44. Paola, G. T.; Idania, V. Z.; Olga, T.; Yatsimirsky, A. K. J. Org. Chem. 2006, 71, 9713-9722. https://doi.org/10.1021/jo061780i
  45. Lee, J. I. Bull. Korean Chem. Soc. 2010, 31, 749-752. https://doi.org/10.5012/bkcs.2010.31.03.749
  46. Lee, J. I. Bull. Korean Chem. Soc. 2007, 28, 863-866. https://doi.org/10.5012/bkcs.2007.28.5.863
  47. Kim, S.; Lee, J. I. J. Org. Chem. 1984, 49, 1712-1716. https://doi.org/10.1021/jo00184a009
  48. Kim, S.; Lee, J. I.; Ko, Y. K. Tetrahedron Lett. 1984, 25, pp 4943-4946. https://doi.org/10.1016/S0040-4039(01)91265-1
  49. Kim, S.; Lee, J. I. J. Org. Chem. 1983, 48, 2608-1716. https://doi.org/10.1021/jo00163a040
  50. Mukaiyama, T.; Araki, M.; Takei, H. J. Amer. Chem. Soc. 1973, 95, 4763-4765. https://doi.org/10.1021/ja00795a055
  51. Araki, M.; Sakata, S.; Takei, H.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1974, 47, 1777-1780. https://doi.org/10.1246/bcsj.47.1777
  52. Pechanec, V.; Kocian, O.; Zavada, J. Collect. Czech. Chem. Commun. 1982, 47, 3405-3411. https://doi.org/10.1135/cccc19823405
  53. Barthel, J.; Justice, J-C.; Wachter, R. Z. Phys. Chem. 1973, 84, 100-113. https://doi.org/10.1524/zpch.1973.84.1-4.100
  54. Jones, R. A. Y. Physical and Mechanistic Organic Chemistry; Cambridge: Norwich, 1984; pp 265-287.
  55. Samuel, D.; Silver, B. L. Adv. Phys. Org. Chem. 1965, 87, 123-186.
  56. Johnson, S. L. Adv. Phys. Org. Chem. 1967, 5, 237-330. https://doi.org/10.1016/S0065-3160(08)60312-3
  57. McClelland, R. A.; Santry, L. J. Acc. Chem. Res. 1983, 16, 394-399. https://doi.org/10.1021/ar00095a001
  58. Um, I. K.; Lee, J. Y.; Fujio, M.; Tsuno, Y. Org. Biomol. Chem. 2006, 4, 2979-2985. https://doi.org/10.1039/b607194e
  59. Zhan, C. G.; Landry, D. W.; Ornstein, R. L. J. Am. Chem. Soc. 2000, 122, 1522-1530. https://doi.org/10.1021/ja993311m
  60. Hori, K.; Hashitani, Y.; Kaku, Y.; Ohkubo, K. Theochem. 1999, 461-462, 589-596.
  61. Kirsch, J. F.; Clewell, W.; Simon, A. J. Org. Chem. 1968, 33, 127-132. https://doi.org/10.1021/jo01265a023

Cited by

  1. Metal Ion Catalysis and Inhibition in Nucleophilic Substitution Reactions of 4-Nitrophenyl Nicotinate and Isonicotinate with Alkali Metal Ethoxides in Anhydrous Ethanol vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1951
  2. Alkali-Metal Ion Catalysis in Alkaline Ethanolysis of 2-Pyridyl Benzoate and Benzyl 2-Pyridyl Carbonate: Effect of Modification of Nonleaving Group from Benzoyl to Benzyloxycarbonyl vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.519
  3. Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate in Acetonitrile vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1547
  4. Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate: Effect of Nonleaving Group on Reactivity and Reaction Mechanism vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1551
  5. Metal-Ion Catalysis in Alkaline Ethanolysis of 2-Pyridyl Thionobenzoate: Effects of Modification of Electrophilic Center from C=O to C=S vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1525
  6. Ar Reactions of 1-Halo-2,4-dinitrobenzenes with Alkali-Metal Ethoxides: Differential Stabilization of Ground State and Transition State Determines Alkali-Metal Ion Catalysis or Inhibition vol.36, pp.7, 2015, https://doi.org/10.1002/bkcs.10344
  7. A Kinetic Study on Nucleophilic Displacement Reactions of Phenyl Y-Substituted-Phenyl Carbonates with Alkali Metal Ethoxides: Metal Ion Effect and Reaction Mechanism vol.85, pp.9, 2012, https://doi.org/10.1246/bcsj.20120104
  8. A Kinetic Study on Aminolysis of 2-Pyridyl X-Substituted Benzoates: Effect of Changing Leaving Group from 4-Nitrophenolate to 2-Pyridinolate on Reactivity and Mechanism vol.31, pp.12, 2010, https://doi.org/10.5012/bkcs.2010.31.12.3588
  9. Kinetics and Reaction Mechanism for Aminolysis of Benzyl 4-Pyridyl Carbonate in H2O: Effect of Modification of Nucleofuge from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Me vol.33, pp.7, 2010, https://doi.org/10.5012/bkcs.2012.33.7.2269
  10. Aminolysis of Benzyl 4-Pyridyl Carbonate in Acetonitrile: Effect of Modification of Leaving Group from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Mechanism vol.33, pp.8, 2010, https://doi.org/10.5012/bkcs.2012.33.8.2719
  11. Kinetic Study on Nucleophilic Substitution Reactions of 4-Nitrophenyl X-Substituted-Benzoates with Potassium Ethoxide: Reaction Mechanism and Role of K+ Ion vol.35, pp.1, 2010, https://doi.org/10.5012/bkcs.2014.35.1.225