DOI QR코드

DOI QR Code

Dynamic Rapid Synthesis of Bis(2,2'-bipyridine)nitrato Zinc (II) Nitrate Using a Microwave Method and its Application to Dye-Sensitized Solar Cells (DSSC)

  • Kim, Young-Mi (Department of Chemistry, College of Science, Yeungnam University) ;
  • Kim, Su-Jung (Department of Chemistry, College of Science, Yeungnam University) ;
  • Nahm, Kee-Pyung (Department of Chemistry, College of Science, Yeungnam University) ;
  • Kang, Mi-Sook (Department of Chemistry, College of Science, Yeungnam University)
  • Received : 2010.04.27
  • Accepted : 2010.08.30
  • Published : 2010.10.20

Abstract

This study examined the synthesis of the crystal structure of bis(2,2'-bipyridine)nitrato zinc (II) nitrate, $[Zn(bipy)_2(NO_3)]^+NO_3^-$ using a microwave treatment at 300 W and 60 Hz for the application to dye-sensitized solar cells. The simulated complex structure of the complex was optimized with the density functional theory calculations for the UV-vis spectrum of the ground state using Gaussian 03 at the B3LYP/LANL2DZ level. The structure of the acquired complex was expected a penta-coordination with four nitrogen atoms of bipyridine and the oxygen bond of the $NO_3^-$ ion. The reflectance UV-vis absorption spectra exhibited two absorptions (L-L transfers) that were assigned to the transfers from the ligand ($\sigma$, $\pi$) of $NO_3$ to the ligand ($\sigma^*$, $\pi^*$) of pyridine at around 200 - 350 nm, and from the non-bonding orbital (n) of O in $NO_3$ to the p-orbital of pyridine at around 450 - 550 nm, respectively. The photoelectric efficiency was approximately 0.397% in the dye-sensitized solar cells with the nanometer-sized $TiO_2$ at an open-circuit voltage (Voc) of 0.39 V, a short-circuit current density (Jsc) of $1.79\;mA/cm^2$, and an incident light intensity of $100\;mW/cm^2$.

Keywords

References

  1. Chou, C. S.; Yang, R. Y.; Yeh, C. K.; Lin, Y. J. Powder Technol. 2009, 194, 95. https://doi.org/10.1016/j.powtec.2009.03.039
  2. An, H.; Xue, B.; Li, D.; Li, H.; Meng, Q.; Guo, L.; Chen, L. Electrochem. Commun. 2006, 8, 170. https://doi.org/10.1016/j.elecom.2005.11.012
  3. Song, H. K.; Park, Y. H.; Han, C. H.; Jee, J. G. J. Ind. Eng. Chem. 2009, 15, 62. https://doi.org/10.1021/ie50157a037
  4. Li, X.; Gui, J.; Yang, H.; Wu, W.; Li, F.; Tian, H.; Huang, C. Inorg. Chim. Acta 2008, 361, 2835. https://doi.org/10.1016/j.ica.2008.02.027
  5. Christiana, A. M.; Irene, V.; Athanassios, I. P.; Polycarpos, F. J. Photochem. Photobiol. A 2007, 191, 6. https://doi.org/10.1016/j.jphotochem.2007.03.024
  6. Nazeeruddin, Md. K.; Bessho, T.; Cevey, Le.; Ito, S.; Klein, C.; De Angelis, F.; Fantacci, S.; Comte, P.; Liska, P.; Imai, H.; Graetzel, M. J. Photochem. Photobiol. A 2007, 185, 331. https://doi.org/10.1016/j.jphotochem.2006.06.028
  7. Argazzi, R.; Larramona, G.; Contado, C.; Bignozzi, C. A. J. Photochem. Photobiol. A 2004, 164, 15. https://doi.org/10.1016/j.jphotochem.2003.12.016
  8. Mak, C. S. K.; Wong, H. L.; Leung, Q. Y.; Tam, W. Y.; Chan, W. K.; Djurisic, A. B. J. Organomet. Chem. 2009, 694, 2770. https://doi.org/10.1016/j.jorganchem.2009.04.037
  9. Kalisch, H.; Hamadeh, H.; RuK land, R.; Krysa, J.; Berntgen, A.; Heuken, M. J. Cryst. Growth 2000, 214/215, 1163.
  10. Zhanga, Z. Z.; Wei, Z. P.; Lu, Y. M.; Shen, D. Z.; Yao, B.; Li, B. H.; Zhao, D. X.; Zhang, J. Y.; Fan, X. W.; Tang, Z. K. J. Cryst. Growth 2007, 301-302, 362.
  11. Uthirakumar, P.; Lee, Y. S.; Suh, E. K.; Hong, C. H. J. Lumin. 2008, 128, 287. https://doi.org/10.1016/j.jlumin.2007.07.021
  12. GAUSSIAN03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03; Revision C.02; Gaussian Inc.: Wallingford, CT, 2004.
  13. Mouider, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Chastain, J., Ed.; Perkin-Elmer Corporation: 1992.
  14. Huang, L.; Zhong, A. G.; Chen, D. B.; Liang, H. D. J. Mol. Struct. 2009, 922, 135. https://doi.org/10.1016/j.molstruc.2008.12.056
  15. Gagliardi, S.; Giorgi, L.; Giorgi, R.; Lisi, N.; Dikonimos, M. T.; Salernitano, E.; Rufoloni, A. Superlattices Microst. 2009, 46, 2058.
  16. Philipp, W.; Markus, Z.; Christian, S.; Marko, B.; Ursa, O. K.; Dirk, G.; Peter, W.; Andreas, H.; Heiner, J. G. J. Photochem. Photobiol. A 2008, 197, 25. https://doi.org/10.1016/j.jphotochem.2007.12.001
  17. Lee, W.; Ramasamy, E.; Lee, D.; Song, J. Sol. Energ. Mat. Sol. C 2008, 92, 814. https://doi.org/10.1016/j.solmat.2007.12.012
  18. AkyuEza, S.; AkyuEz, T.; Ozer, N. M. J. Mol. Struct. 2001, 565-566, 493.
  19. Aziz, M. S. Solid State Electron. 2008, 52, 1145. https://doi.org/10.1016/j.sse.2008.01.020
  20. El-Nahass, M. M.; Zeyada, H. M.; Abd-El-Rahmana, K. F.; Darwish, A. A. A. Sol. Energ. Mat. Sol. C 2007, 91, 1120. https://doi.org/10.1016/j.solmat.2007.03.016
  21. Jayaweera, P. M.; Palayangoda, S. S.; Tennakone, K. J. Photochem. Photobiol. A 2001, 140, 173. https://doi.org/10.1016/S1010-6030(01)00392-6

Cited by

  1. Molecular engineering of sensitizers for dye-sensitized solar cell applications vol.12, pp.3, 2012, https://doi.org/10.1002/tcr.201100044
  2. by lanthanide based hybrid complexes associated with a single crystal growth mediated transformation vol.4, pp.26, 2016, https://doi.org/10.1039/C6TC00785F
  3. In situ formation of molecular-scale ordered polyaniline films by zinc coordination vol.9, pp.19, 2017, https://doi.org/10.1039/C7NR01060E
  4. Microwave synthesis of fluorescent and luminescent dyes (1990–2017) vol.1173, pp.None, 2010, https://doi.org/10.1016/j.molstruc.2018.06.101