References
- Hamilton, J. F. Adv. Phys. 1988, 37, 359. https://doi.org/10.1080/00018738800101399
- Araujo, R. J. Contemp. Phys. 1980, 21, 77. https://doi.org/10.1080/00107518008210941
- Reddy, V. R.; Currao, A.; Calzaferri, G. J. Mater. Chem. 2007, 17, 3603. https://doi.org/10.1039/b705219g
- Currao, A.; Reddy, V. R.; van Veen, M. K.; Schropp, R. E. I.; Calzaferri, G. Photochem. Photobiol. Sci. 2004, 3, 1017. https://doi.org/10.1039/b411882k
- Schurch, D.; Currao, A.; Sarkar, S.; Hodes, G.; Calzaferri, G. J. Phys. Chem. B 2002, 106, 12764. https://doi.org/10.1021/jp0265081
- Lanz, M.; Schurch, D.; Calzaferri, G. J. Photochem. Photobiol., A 1999, 120, 105. https://doi.org/10.1016/S1010-6030(98)00434-1
- Wang, P.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.; Wei, J. Y.; Whangbo, M. H. Angew. Chem. Int. Ed. 2008, 47, 7931. https://doi.org/10.1002/anie.200802483
- Choi, M.; Shin, K. H.; Jang, J. J. Colloid Interface Sci. 2010, 341, 83. https://doi.org/10.1016/j.jcis.2009.09.037
- An, C. H.; Peng, S.; Sun, Y. G. Adv. Mater. 2010, 22, 2570. https://doi.org/10.1002/adma.200904116
- Potiyaraj, P.; Kumlangdudsana, P.; Dubas, S. T. Mater. Lett. 2007, 61, 2464. https://doi.org/10.1016/j.matlet.2006.09.039
- Li, C. H.; Zhang, X. P.; Whitbourne, R. J. Biomater. Appl. 1999, 13, 206.
- Spadaro, J. A.; Webster, D. A.; Becker, R. O. Clin. Orthop. Relat. Res. 1979, 266.
- Sun, L. L.; Song, Y. H.; Wang, L.; Guo, C. L.; Sun, Y. J.; Liu, Z. L.; Li, Z. J. Phys. Chem. C 2008, 112, 1415. https://doi.org/10.1021/jp075550z
- Bagwe, R. P.; Khilar K. C. Langmuir 1997, 13, 6432. https://doi.org/10.1021/la9700681
- Sugimoto, T.; Miyake, K. J. Colloid Interface Sci. 1990, 140, 335. https://doi.org/10.1016/0021-9797(90)90354-Q
- Lim, B.; Jiang, M. J.; Tao, J.; Camargo, P. H. C.; Zhu, Y. M.; Xia, Y. N. Adv. Funct. Mater. 2009, 19, 189. https://doi.org/10.1002/adfm.200801439
- Sun, Y. G.; Xia, Y. N. Science 2002, 298, 2176. https://doi.org/10.1126/science.1077229
- Jun, Y. W.; Choi, J. S.; Cheon, J. Angew. Chem. Int. Ed. 2006, 45, 3414. https://doi.org/10.1002/anie.200503821
- Tao, A. R.; Habas, S.; Yang, P. D. Small 2008, 4, 310. https://doi.org/10.1002/smll.200701295
- Glaus, S.; Calzaferri, G. Photochem. Photobiol. Sci. 2003, 2, 398. https://doi.org/10.1039/b211678b
- Sugimoto, T. Monodispersed Particles; Elsevier Science: Amsterdam, 2001.
Cited by
- Chemical Synthesis of AgCl Microstructures Using Etched Ion Track Polycarbonate Membranes vol.42, pp.9, 2012, https://doi.org/10.1080/15533174.2012.680112
- Synthesis of Spiky Ag–Au Octahedral Nanoparticles and Their Tunable Optical Properties vol.117, pp.32, 2013, https://doi.org/10.1021/jp4063077
- Silver Chloride as a Heterogeneous Nucleant for the Growth of Silver Nanowires vol.7, pp.5, 2013, https://doi.org/10.1021/nn400414h
- One step synthesis of silver nanowires used in preparation of conductive silver paste vol.25, pp.7, 2014, https://doi.org/10.1007/s10854-014-1961-8
- Polyol Synthesis of Silver Nanowires by Heterogeneous Nucleation; Mechanistic Aspects Influencing Nanowire Diameter and Length vol.26, pp.22, 2014, https://doi.org/10.1021/cm502827b
- Preparation of agcl/polyaniline nanocomposite in polyvinylalcohol matrix and its electrocatalytic activity vol.132, pp.35, 2015, https://doi.org/10.1002/app.42366
- S-Nanoparticles in Soil Determined by X-ray Absorption Spectroscopy and Diffusive Gradients in Thin Films vol.49, pp.2, 2015, https://doi.org/10.1021/es504229h
- Synthesis of AgCl nanoparticles in ionic liquid and their application in photodegradation of Orange II vol.50, pp.10, 2015, https://doi.org/10.1007/s10853-015-8917-0
- Growth of Silver Nanowires from Controlled Silver Chloride Seeds and Their Application for Fluorescence Enhancement Based on Localized Surface Plasmon Resonance vol.13, pp.21, 2017, https://doi.org/10.1002/smll.201603392
- Synthesis of Gold Nanoparticle-Embedded Silver Cubic Mesh Nanostructures Using AgCl Nanocubes for Plasmonic Photocatalysis vol.13, pp.43, 2017, https://doi.org/10.1002/smll.201701751
- Ag@AgCl embedded on cellulose film: a stable, highly efficient and easily recyclable photocatalyst vol.24, pp.11, 2017, https://doi.org/10.1007/s10570-017-1438-z
- Influence of Hydrochloric Acid Concentrations on the Formation of AgCl-Doped Iron Oxide-Silica Coreshell Structures vol.77, pp.1662-0356, 2012, https://doi.org/10.4028/www.scientific.net/AST.77.184
- a facile microwave hydrothermal method vol.24, pp.25, 2013, https://doi.org/10.1088/0957-4484/24/25/255601
- Facile one-pot synthesis of flower-like AgCl microstructures and enhancing of visible light photocatalysis vol.8, pp.1, 2013, https://doi.org/10.1186/1556-276X-8-442
- A simple method of growing silver chloride nanocubes on silver nanowires vol.26, pp.38, 2015, https://doi.org/10.1088/0957-4484/26/38/381002
- Nanoporous Gold Nanoframes with Minimalistic Architectures: Lower Porosity Generates Stronger Surface-Enhanced Raman Scattering Capabilities vol.27, pp.22, 2010, https://doi.org/10.1021/acs.chemmater.5b03870
- Preparation and characterization of silver chloride nanoparticles as an antibacterial agent vol.6, pp.4, 2010, https://doi.org/10.1088/2043-6262/6/4/045011
- Microwave synthesis of branched silver nanowires and their use as fillers for high thermal conductivity polymer composites vol.27, pp.17, 2010, https://doi.org/10.1088/0957-4484/27/17/175601
- Facile Aqueous Phase Synthesis of (200) Faceted Au-AgCl Cubes Using Bael Gum and Its Activity Toward Oxidation and Detection of o-PDA vol.4, pp.6, 2010, https://doi.org/10.1021/acssuschemeng.5b01279
- Manipulating the d-Band Electronic Structure of Platinum-Functionalized Nanoporous Gold Bowls: Synergistic Intermetallic Interactions Enhance Catalysis vol.28, pp.14, 2010, https://doi.org/10.1021/acs.chemmater.6b01925
- Photocatalytic degradation of methyl orange, methylene blue and rhodamine B with AgCl nanocatalyst synthesised from its bulk material in the ionic liquid [P6 6 6 14]Cl vol.75, pp.1, 2010, https://doi.org/10.2166/wst.2016.499
- Aqueous synthesis of highly monodisperse sub-100 nm AgCl nanospheres/cubes and their plasmonic nanomesh replicas as visible-light photocatalysts and single SERS probes vol.30, pp.29, 2010, https://doi.org/10.1088/1361-6528/ab15b2
- Cytotoxic and apoptotic properties of silver chloride nanoparticles synthesized using Escherichia coli cell-free supernatant on human breast cancer MCF 7 cell line vol.47, pp.1, 2019, https://doi.org/10.1080/21691401.2019.1604533
- Wrapping AgCl Nanostructures with Trimetallic Nanomeshes for Plasmon-Enhanced Catalysis and in Situ SERS Monitoring of Chemical Reactions vol.12, pp.2, 2010, https://doi.org/10.1021/acsami.9b18364
- Structurally and Compositionally Tunable Absorption Properties of AgCl@AgAu Nanocatalysts for Plasmonic Photocatalytic Degradation of Environmental Pollutants vol.10, pp.4, 2020, https://doi.org/10.3390/catal10040405
- Nanoporous Silver Submicrocubes Layer by Layer Encapsulated with Polyelectrolyte Films: Nonenzymatic Catalysis for Glucose Monitoring vol.36, pp.13, 2010, https://doi.org/10.1021/acs.langmuir.9b03972
- Reusable photoresponsive Ag/AgCl nanocube-catalyzed one-pot synthesis of seleno[2,3-b]pyridine derivatives vol.46, pp.6, 2010, https://doi.org/10.1007/s11164-020-04143-6
- Chemical Identity of Poly(N-vinylpyrrolidone) End Groups Impact Shape Evolution During the Synthesis of Ag Nanostructures vol.143, pp.1, 2010, https://doi.org/10.1021/jacs.0c08528
- Nanomaterial Synthesis in Ionic Liquids and Their Use on the Photocatalytic Degradation of Emerging Pollutants vol.11, pp.2, 2021, https://doi.org/10.3390/nano11020411
- Biocompatibility assessment of silver chloride nanoparticles derived from Padina gymnospora and its therapeutic potential vol.2, pp.1, 2010, https://doi.org/10.1088/2632-959x/abd965
- Squarelike AgCl Nanoparticles Grown Using NiCl2(Pyz)2-Based Metal-Organic Framework Nanosheet Templates for Antibacterial Applications vol.4, pp.5, 2010, https://doi.org/10.1021/acsanm.1c01015