DOI QR코드

DOI QR Code

Facile Synthesis of Silver Chloride Nanocubes and Their Derivatives

  • Kim, Seung-Wook (Department of Materials Science and Engineering, Korea University) ;
  • Chung, Haeg-Eun (Department of Materials Science and Engineering, Korea University) ;
  • Kwon, Jong-Hwa (Electromagnetic Environment Research Team, Electronics and Telecommunication Research Institute) ;
  • Yoon, Ho-Gyu (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Woong (Department of Materials Science and Engineering, Korea University)
  • 투고 : 2010.07.21
  • 심사 : 2010.08.16
  • 발행 : 2010.10.20

초록

We demonstrate a facile route to synthesize silver chloride nanocubes and derivative nanomaterials. For the synthesis of silver chloride nanocubes, silver nitrate and hydrochloric acid were used as precursors in ethylene glycol, and poly (vinyl pyrrolidone) as a surfactant. Molar ratio of the two precursors greatly influenced the morphology and composition of the final products. As-synthesized silver chloride nanocubes showed size-dependent optical properties in the visible region of light, which is likely due to a small amount of silver clusters formed on the surface of silver chloride nanocubes. Moreover, we show for the first time that simple reduction of silver chloride nanocubes with different reducing reagents leads to the formation of delicate nanostructures such as cube-shaped silver-nanoparticle aggregates, and silver chloride nanocubes with truncated corners and with silver-nanograin decorated corners. Additionally, we quantitatively investigated for the first time the evolution of silver chloride nanocubes to silver chloride nanocubes decorated with silver nanoparticles upon exposure to e-beam. Our novel and facile synthesis of silver chloride related nanoparticles with delicately controlled morphologies could be an important basis for fabricating efficient photocatalysts and antibacterial materials.

키워드

참고문헌

  1. Hamilton, J. F. Adv. Phys. 1988, 37, 359. https://doi.org/10.1080/00018738800101399
  2. Araujo, R. J. Contemp. Phys. 1980, 21, 77. https://doi.org/10.1080/00107518008210941
  3. Reddy, V. R.; Currao, A.; Calzaferri, G. J. Mater. Chem. 2007, 17, 3603. https://doi.org/10.1039/b705219g
  4. Currao, A.; Reddy, V. R.; van Veen, M. K.; Schropp, R. E. I.; Calzaferri, G. Photochem. Photobiol. Sci. 2004, 3, 1017. https://doi.org/10.1039/b411882k
  5. Schurch, D.; Currao, A.; Sarkar, S.; Hodes, G.; Calzaferri, G. J. Phys. Chem. B 2002, 106, 12764. https://doi.org/10.1021/jp0265081
  6. Lanz, M.; Schurch, D.; Calzaferri, G. J. Photochem. Photobiol., A 1999, 120, 105. https://doi.org/10.1016/S1010-6030(98)00434-1
  7. Wang, P.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.; Wei, J. Y.; Whangbo, M. H. Angew. Chem. Int. Ed. 2008, 47, 7931. https://doi.org/10.1002/anie.200802483
  8. Choi, M.; Shin, K. H.; Jang, J. J. Colloid Interface Sci. 2010, 341, 83. https://doi.org/10.1016/j.jcis.2009.09.037
  9. An, C. H.; Peng, S.; Sun, Y. G. Adv. Mater. 2010, 22, 2570. https://doi.org/10.1002/adma.200904116
  10. Potiyaraj, P.; Kumlangdudsana, P.; Dubas, S. T. Mater. Lett. 2007, 61, 2464. https://doi.org/10.1016/j.matlet.2006.09.039
  11. Li, C. H.; Zhang, X. P.; Whitbourne, R. J. Biomater. Appl. 1999, 13, 206.
  12. Spadaro, J. A.; Webster, D. A.; Becker, R. O. Clin. Orthop. Relat. Res. 1979, 266.
  13. Sun, L. L.; Song, Y. H.; Wang, L.; Guo, C. L.; Sun, Y. J.; Liu, Z. L.; Li, Z. J. Phys. Chem. C 2008, 112, 1415. https://doi.org/10.1021/jp075550z
  14. Bagwe, R. P.; Khilar K. C. Langmuir 1997, 13, 6432. https://doi.org/10.1021/la9700681
  15. Sugimoto, T.; Miyake, K. J. Colloid Interface Sci. 1990, 140, 335. https://doi.org/10.1016/0021-9797(90)90354-Q
  16. Lim, B.; Jiang, M. J.; Tao, J.; Camargo, P. H. C.; Zhu, Y. M.; Xia, Y. N. Adv. Funct. Mater. 2009, 19, 189. https://doi.org/10.1002/adfm.200801439
  17. Sun, Y. G.; Xia, Y. N. Science 2002, 298, 2176. https://doi.org/10.1126/science.1077229
  18. Jun, Y. W.; Choi, J. S.; Cheon, J. Angew. Chem. Int. Ed. 2006, 45, 3414. https://doi.org/10.1002/anie.200503821
  19. Tao, A. R.; Habas, S.; Yang, P. D. Small 2008, 4, 310. https://doi.org/10.1002/smll.200701295
  20. Glaus, S.; Calzaferri, G. Photochem. Photobiol. Sci. 2003, 2, 398. https://doi.org/10.1039/b211678b
  21. Sugimoto, T. Monodispersed Particles; Elsevier Science: Amsterdam, 2001.

피인용 문헌

  1. Chemical Synthesis of AgCl Microstructures Using Etched Ion Track Polycarbonate Membranes vol.42, pp.9, 2012, https://doi.org/10.1080/15533174.2012.680112
  2. Synthesis of Spiky Ag–Au Octahedral Nanoparticles and Their Tunable Optical Properties vol.117, pp.32, 2013, https://doi.org/10.1021/jp4063077
  3. Silver Chloride as a Heterogeneous Nucleant for the Growth of Silver Nanowires vol.7, pp.5, 2013, https://doi.org/10.1021/nn400414h
  4. One step synthesis of silver nanowires used in preparation of conductive silver paste vol.25, pp.7, 2014, https://doi.org/10.1007/s10854-014-1961-8
  5. Polyol Synthesis of Silver Nanowires by Heterogeneous Nucleation; Mechanistic Aspects Influencing Nanowire Diameter and Length vol.26, pp.22, 2014, https://doi.org/10.1021/cm502827b
  6. Preparation of agcl/polyaniline nanocomposite in polyvinylalcohol matrix and its electrocatalytic activity vol.132, pp.35, 2015, https://doi.org/10.1002/app.42366
  7. S-Nanoparticles in Soil Determined by X-ray Absorption Spectroscopy and Diffusive Gradients in Thin Films vol.49, pp.2, 2015, https://doi.org/10.1021/es504229h
  8. Synthesis of AgCl nanoparticles in ionic liquid and their application in photodegradation of Orange II vol.50, pp.10, 2015, https://doi.org/10.1007/s10853-015-8917-0
  9. Growth of Silver Nanowires from Controlled Silver Chloride Seeds and Their Application for Fluorescence Enhancement Based on Localized Surface Plasmon Resonance vol.13, pp.21, 2017, https://doi.org/10.1002/smll.201603392
  10. Synthesis of Gold Nanoparticle-Embedded Silver Cubic Mesh Nanostructures Using AgCl Nanocubes for Plasmonic Photocatalysis vol.13, pp.43, 2017, https://doi.org/10.1002/smll.201701751
  11. Ag@AgCl embedded on cellulose film: a stable, highly efficient and easily recyclable photocatalyst vol.24, pp.11, 2017, https://doi.org/10.1007/s10570-017-1438-z
  12. Influence of Hydrochloric Acid Concentrations on the Formation of AgCl-Doped Iron Oxide-Silica Coreshell Structures vol.77, pp.1662-0356, 2012, https://doi.org/10.4028/www.scientific.net/AST.77.184
  13. a facile microwave hydrothermal method vol.24, pp.25, 2013, https://doi.org/10.1088/0957-4484/24/25/255601
  14. Facile one-pot synthesis of flower-like AgCl microstructures and enhancing of visible light photocatalysis vol.8, pp.1, 2013, https://doi.org/10.1186/1556-276X-8-442
  15. A simple method of growing silver chloride nanocubes on silver nanowires vol.26, pp.38, 2015, https://doi.org/10.1088/0957-4484/26/38/381002
  16. Nanoporous Gold Nanoframes with Minimalistic Architectures: Lower Porosity Generates Stronger Surface-Enhanced Raman Scattering Capabilities vol.27, pp.22, 2010, https://doi.org/10.1021/acs.chemmater.5b03870
  17. Preparation and characterization of silver chloride nanoparticles as an antibacterial agent vol.6, pp.4, 2010, https://doi.org/10.1088/2043-6262/6/4/045011
  18. Microwave synthesis of branched silver nanowires and their use as fillers for high thermal conductivity polymer composites vol.27, pp.17, 2010, https://doi.org/10.1088/0957-4484/27/17/175601
  19. Facile Aqueous Phase Synthesis of (200) Faceted Au-AgCl Cubes Using Bael Gum and Its Activity Toward Oxidation and Detection of o-PDA vol.4, pp.6, 2010, https://doi.org/10.1021/acssuschemeng.5b01279
  20. Manipulating the d-Band Electronic Structure of Platinum-Functionalized Nanoporous Gold Bowls: Synergistic Intermetallic Interactions Enhance Catalysis vol.28, pp.14, 2010, https://doi.org/10.1021/acs.chemmater.6b01925
  21. Photocatalytic degradation of methyl orange, methylene blue and rhodamine B with AgCl nanocatalyst synthesised from its bulk material in the ionic liquid [P6 6 6 14]Cl vol.75, pp.1, 2010, https://doi.org/10.2166/wst.2016.499
  22. Aqueous synthesis of highly monodisperse sub-100 nm AgCl nanospheres/cubes and their plasmonic nanomesh replicas as visible-light photocatalysts and single SERS probes vol.30, pp.29, 2010, https://doi.org/10.1088/1361-6528/ab15b2
  23. Cytotoxic and apoptotic properties of silver chloride nanoparticles synthesized using Escherichia coli cell-free supernatant on human breast cancer MCF 7 cell line vol.47, pp.1, 2019, https://doi.org/10.1080/21691401.2019.1604533
  24. Wrapping AgCl Nanostructures with Trimetallic Nanomeshes for Plasmon-Enhanced Catalysis and in Situ SERS Monitoring of Chemical Reactions vol.12, pp.2, 2010, https://doi.org/10.1021/acsami.9b18364
  25. Structurally and Compositionally Tunable Absorption Properties of AgCl@AgAu Nanocatalysts for Plasmonic Photocatalytic Degradation of Environmental Pollutants vol.10, pp.4, 2020, https://doi.org/10.3390/catal10040405
  26. Nanoporous Silver Submicrocubes Layer by Layer Encapsulated with Polyelectrolyte Films: Nonenzymatic Catalysis for Glucose Monitoring vol.36, pp.13, 2010, https://doi.org/10.1021/acs.langmuir.9b03972
  27. Reusable photoresponsive Ag/AgCl nanocube-catalyzed one-pot synthesis of seleno[2,3-b]pyridine derivatives vol.46, pp.6, 2010, https://doi.org/10.1007/s11164-020-04143-6
  28. Chemical Identity of Poly(N-vinylpyrrolidone) End Groups Impact Shape Evolution During the Synthesis of Ag Nanostructures vol.143, pp.1, 2010, https://doi.org/10.1021/jacs.0c08528
  29. Nanomaterial Synthesis in Ionic Liquids and Their Use on the Photocatalytic Degradation of Emerging Pollutants vol.11, pp.2, 2021, https://doi.org/10.3390/nano11020411
  30. Biocompatibility assessment of silver chloride nanoparticles derived from Padina gymnospora and its therapeutic potential vol.2, pp.1, 2010, https://doi.org/10.1088/2632-959x/abd965
  31. Squarelike AgCl Nanoparticles Grown Using NiCl2(Pyz)2-Based Metal-Organic Framework Nanosheet Templates for Antibacterial Applications vol.4, pp.5, 2010, https://doi.org/10.1021/acsanm.1c01015