DOI QR코드

DOI QR Code

Investigations on Microcrystalline Silicon Films for Solar Cell Application

  • Hwang, Hae-Sook (Department of Applied Chemistry, Daejon University) ;
  • Park, Min-Gyu (Korea Research Institute of Standards and Science) ;
  • Ruh, Hyun (Korea Research Institute of Standards and Science) ;
  • Yu, Hyun-Ung (Korea Research Institute of Standards and Science)
  • Received : 2010.04.27
  • Accepted : 2010.08.27
  • Published : 2010.10.20

Abstract

Hydrogenated microcrystalline silicon (${\mu}c$-Si:H) thin film for solar cells is prepared by plasma-enhanced chemical vapor deposition and physical properties of the ${\mu}c$-Si:H p-layer has been investigated. With respect to stable efficiency, this film is expected to surpass the performance of conventional amorphous silicon based solar cells and very soon be a close competitor to other thin film photovoltaic materials. Silicon in various structural forms has a direct effect on the efficiency of solar cell devices with different electron mobility and photon conversion. A Raman microscope is adopted to study the degree of crystallinity of Si film by analyzing the integrated intensity peaks at 480, 510 and $520\;cm^{-1}$, which corresponds to the amorphous phase (a-Si:H), microcrystalline (${\mu}c$-Si:H) and large crystals (c-Si), respectively. The crystal volume fraction is calculated from the ratio of the crystalline and the amorphous phase. The results are compared with high-resolution transmission electron microscopy (HR-TEM) for the determination of crystallinity factor. Optical properties such as refractive index, extinction coefficient, and band gap are studied with reflectance spectra.

Keywords

References

  1. Berginski, M.; Hupkes, J.; Gordijn, A.; Reetz, W.; Watjen, T.; Rech, B.; Wuttig, M. Solar Energy Mater. Solar Cells 2008, 92, 1037. https://doi.org/10.1016/j.solmat.2008.03.005
  2. Yoshioka, K.; Sameshima, T.; Sano, N. Solid-State Electronics 2008, 52, 359. https://doi.org/10.1016/j.sse.2007.10.005
  3. Jung, Y. C.; Kim, D. S.; Hong, B. H.; Cho, K. H.; Hwang, S. W.; Ahn, D.; Yu, Y. S.; Choi, B. H. J. Nanosci. Nanotechnol. 2008, 8, 5009. https://doi.org/10.1166/jnn.2008.1315
  4. Takagi, T.; Ueda, M.; Ito, N.; Watabe, Y.; Kondo, M. Japan. J. Appl. Phys. 2006, 45, 4003. https://doi.org/10.1143/JJAP.45.4003
  5. Kelzenberg, M. D.; Turner-Evans, D. B.; Kayes, B. M.; Filler, M. A.; Putnam, M. C.; Lewis, N. S.; Atwater, H. A. Nano Lett. 2007, 8, 710. https://doi.org/10.1021/nl072622p
  6. Chowdhury, A.; Mukhopadhyay, S.; Ray, S. Solar Energy Mater. Solar Cells 2009, 93, 597. https://doi.org/10.1016/j.solmat.2008.12.006
  7. Terasa, R.; Albert, M.; Bartha, J. W.; Roessler, T.; Abramov, A. S.; Kosarev, A. I.; Kuduyarova, V. K.; Vinogradov, A. Thin Solid Films 2003, 427, 270. https://doi.org/10.1016/S0040-6090(02)01207-5
  8. Nuruddin, A.; Abelson, J. R. Thin Solid Films 2001, 394, 49.
  9. Li, S.-B.; Wu, Z.-M.; Jiang, Y.-D.; Yu, J.-S.; Li, W.; Liao, N.-M. J. Appl. Phys. 2008, 41, 5.
  10. Strahm, B.; Howling, A. A.; Sansonnens, L.; Hollenstein, C. J. Vac. Sci. Technol. A 2007, 25, 1198. https://doi.org/10.1116/1.2433985
  11. Buitrago, R. H.; Risso, G. A.; Cutrera, M.; Battioni, M.; de Bernardez, L.; Schmidtm, J. A.; Arce, R. D.; Koropecki, R. R. Intern. J. Hydrogen Energy 2008, 33, 3522. https://doi.org/10.1016/j.ijhydene.2008.03.040
  12. Zhang, X. D.; Zhang, F. R.; Amanatides, E.; Mataras, D.; Zhao, Y. Thin Solid Films 2008, 516, 6912. https://doi.org/10.1016/j.tsf.2007.12.060
  13. Myong, S. Y.; Sriprapha, K.; Yashiki, Y.; Miyajima, S.; Yamada, A.; Konagai, M. Solar Energy Mater. Solar Cells 2008, 639, 92.
  14. Acciarria, M.; Binettia, S.; Bollania, M.; Comottia, A.; Fumagallia, L.; Pizzinia, S.; von Kanel, H. Solar Energy Mater. Solar Cells 2005, 87, 11. https://doi.org/10.1016/j.solmat.2004.09.012
  15. Droz, C.; Vallat-Sauvain, E.; Bailat, J.; Feitknecht, L.; Meier, J.; Shah, A. Solar Energy Mater. Solar Cells 2004, 81, 61. https://doi.org/10.1016/j.solmat.2003.07.004
  16. Voutsas, A. T.; Hatalis, M. K.; Boyce, J.; Chiang, A. J. Appl. Phys. 1995, 78, 6999. https://doi.org/10.1063/1.360468
  17. Li, H.; Franken, R. H.; Stolk, R. L.; van der Werf, C. H. M.; Rath, J. K.; Schropp, R. E. I. Thin Solid Films 2008, 516, 755. https://doi.org/10.1016/j.tsf.2007.06.195
  18. Lee, H.-O.; Kim, E.-M.; Yu, H.; Jung, J.-S.; Chae, W.-S. Nanotechnol. 2009, 20, 325604. https://doi.org/10.1088/0957-4484/20/32/325604
  19. Ilker, A. Y.; Tolunay, H. Turk. J. Phys. 2001, 25, 215.
  20. de Dood, M. J. A.; Polman, A.; Zijlstra, T.; van der Drift, E. W. J. M. J. Appl. Phys. 2002, 92, 649. https://doi.org/10.1063/1.1486055
  21. Reitano, R.; Grimaldi, M. G.; Baeri, P.; Borghesi, A.; Sassella, A. Thin Solid Films 1993, 233, 203. https://doi.org/10.1016/0040-6090(93)90090-C
  22. Pandey, V.; Mehta, N.; Tripathi, S. K.; Kumar, A. J. Optoelectron. Adv. Mater. 2005, 7, 2641.

Cited by

  1. Silicon diatom frustules as nanostructured photoelectrodes vol.50, pp.72, 2014, https://doi.org/10.1039/C4CC04470C
  2. Aluminum induced crystallization of amorphous silicon dependent on annealing conditions with graphite plate vol.12, pp.1, 2016, https://doi.org/10.1007/s13391-015-5325-1
  3. Doping of nano-crystalline silicon powders by mechanical alloying: the process and characterization vol.28, pp.19, 2017, https://doi.org/10.1007/s10854-017-7340-5
  4. Analysis of thickness-dependent optical parameters of a-Si:H/nc-Si:H multilayer thin films vol.6, pp.4, 2017, https://doi.org/10.1007/s40243-017-0107-3
  5. Effects of Hydrogen-Dilution on Opto-Structural Properties of Hot-wire CVD Grown a-Si:H/nc-Si:H Multilayer for Photovoltaics pp.1876-9918, 2017, https://doi.org/10.1007/s12633-017-9629-7
  6. Plasma-enhanced reactive linear sputtering source for formation of silicon-based thin films vol.89, pp.8, 2018, https://doi.org/10.1063/1.5037408
  7. Raman study of phase transformation from diamond structure to wurtzite structure in the silicon nanowires vol.49, pp.28, 2010, https://doi.org/10.1088/0022-3727/49/28/285304
  8. The possibility of reducing the reflectance and improving the tribological behavior of Si wafer by UNSM technique vol.105, pp.None, 2010, https://doi.org/10.1016/j.triboint.2016.09.042
  9. High deposition rate nanocrystalline and amorphous silicon thin film production via surface wave plasma source vol.325, pp.None, 2010, https://doi.org/10.1016/j.surfcoat.2017.05.074