DOI QR코드

DOI QR Code

Density Functional Theoretical Study on Intermolecular Interactions of 3,6-Dihydrazino-1,2,4,5-tetrazine Dimers

  • Hu, Yin (School of Chemical Engineering, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University) ;
  • Ma, Hai-Xia (School of Chemical Engineering, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University) ;
  • Li, Jun-Feng (School of Chemical Engineering, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University) ;
  • Gao, Rong (School of Chemical Engineering, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University) ;
  • Song, Ji-Rong (Conservation Technology Department, the Palace Museum)
  • Received : 2010.05.28
  • Accepted : 2010.08.26
  • Published : 2010.10.20

Abstract

Seven fully optimized geometries of 3,6-dihydrazino-1,2,4,5-tetrazine (DHT) dimers have been obtained with density functional theory (DFT) method at the B3LYP/$6-311++G^{**}$ level. The intermolecular interaction energy was calculated with zero point energy (ZPE) correction and basis set superposition error (BSSE) correction. The greatest corrected intermolecular interaction energy of the dimers is $-23.69\;kJ{\cdot}mol^{-1}$. Natural bond orbital (NBO) analysis is performed to reveal the origin of the interaction. Based on the vibrational analysis, the changes of thermodynamic properties from the monomers to dimer with the temperature ranging from 200.0 K to 800.0 K have been obtained using the statistical thermodynamic method. It was found that the hydrogen bonds dominantly contribute to the dimers, while the binding energies are not only determined by hydrogen bonding. The dimerization process can not occur spontaneously at given temperatures.

Keywords

References

  1. Hiskey, M.; Goldman, N.; Stine, J. J. Energ. Mater. 1998, 16, 119. https://doi.org/10.1080/07370659808217508
  2. Paine, R. T.; Koestle, W.; Borek, T. J. Inorg. Chem. 1999, 38, 3738. https://doi.org/10.1021/ic990316b
  3. Talawar, M. B.; Sivabalan, R.; Senthilkumar, N. J. Hazard. Mater. 2004, 113, 11. https://doi.org/10.1016/j.jhazmat.2004.05.016
  4. Yang, S. Q.; Yue, S. T. Chinese Journal of Energetic Materials 2003, 11, 231.
  5. Yang, S. Q.; Xu, S. L.; Lei, Y. P. Chinese Journal of Energetic Materials 2006, 14, 475.
  6. Zhou, Y. Master Dissertation. Mianyang: China Academy of Engineering Physics; 2007.
  7. Chavez, D. E.; Hiskey, M. A.; Naud, D. J. Pyrotech. 1999, 10, 17.
  8. Nurullah, S. Tetrahedron 2007, 63, 4199. https://doi.org/10.1016/j.tet.2007.02.051
  9. Marcus, H. J. Tetrazine Compounds. US Patent 3244702. 1966.
  10. Chavez, D. E.; Hiskey, M. A. J. Energ. Mater. 1999, 17, 357. https://doi.org/10.1080/07370659908201796
  11. Li, X. T.; Pang, S. P.; Yu, Y. Z.; Luo, Y. J. Acta Chim. Sin. 2007, 65, 971.
  12. Pan, J.; He, J. X.; Tao, Y. J. Chinese Journal of Energetic Materials 2006, 14, 116.
  13. Yang, S. Q.; Xu, S. L. Chinese Research and Application 2006, 18, 320.
  14. Xu, S. L.; Yang, S. Q.; Zhang, W.; Zhang, Jouranl of National University of Denfense Technology 2006, 28, 17.
  15. Chavez, D. E.; Hiskey, M. A. Journal of Energetic Materials 1999, 17, 357. https://doi.org/10.1080/07370659908201796
  16. Chavez, D. E.; Hiskey, M. A. Heterocycl. Chem. 1998, 35, 1329. https://doi.org/10.1002/jhet.5570350616
  17. Pagoria, P. F.; Lee, G. S.; Mitchell, A. R.; Schmidt, R. D. Thermochimica Acta 2002, 384, 187. https://doi.org/10.1016/S0040-6031(01)00805-X
  18. Oxley, J. C.; Smith, J. L.; Chen, H. Thermochimica Acta 2002, 384, 91. https://doi.org/10.1016/S0040-6031(01)00780-8
  19. Jadhav, H. S.; Dhavale, D. D.; Krishnamurthy, V. V. Theory and Practice of Energetic Materials 2001, 493.
  20. Xu, K. Z.; Zhao, F. Q.; Ren, Y. H.; Ma, H. X.; Song, J. R.; Hu, R. Z. Acta Phys. Chim. Sin. 2009, 25, 309.
  21. Tan, J. Z.; Xiao, H. M.; Gong, X. D. Acta Chim. Sinica 2002, 60, 200.
  22. Ju, X. H.; Xiao, H. M. J. Mol. Struct. Theochem. 2002, 588, 79. https://doi.org/10.1016/S0166-1280(02)00142-2
  23. Ju, X. H.; Xiao, J. J.; Xiao, H. M. J. Mol. Struct. Theochem. 2003, 626, 231. https://doi.org/10.1016/S0166-1280(03)00124-6
  24. Ma, H. X.; Xiao, H. M.; Song, J. R.; Ju, X. H.; Zhu, W.; Yu, K. B. Chemical Physics 2008, 344, 79. https://doi.org/10.1016/j.chemphys.2007.11.020
  25. Xiao, H. M.; Ju, X. H.; Xu, L. N.; Fang, G. Y. J. Chem. Phys. 2004, 121, 12523. https://doi.org/10.1063/1.1812258
  26. Fletcher, R.; Powell, M. J. D. Comput. J. 1963, 6, 163. https://doi.org/10.1093/comjnl/6.2.163
  27. Schlegel, H. B. J. Comput. Chem. 1982, 3, 124.
  28. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. https://doi.org/10.1080/00268977000101561
  29. Johnson, A.; Kollman, P.; Rothenberg, S. Thermochim. Acta 1973, 29, 167.
  30. Chalasinski, G.; Szczesniak, M. M. Mol. Phys. 1988, 63, 205. https://doi.org/10.1080/00268978800100171
  31. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Fores-man, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 98, Revision A. 7, Gaussian, Inc., Pittsburgh PA, 1998.
  32. Feyereisen, M. W.; Feller, D.; Dixon, D. A. J. Phys. Chem. 1996, 100, 2993. https://doi.org/10.1021/jp952860l
  33. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735. https://doi.org/10.1063/1.449486
  34. Reed, A. E.; Weinhold, F. J. Chem. Phys. 1985, 83, 1736. https://doi.org/10.1063/1.449360
  35. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. (Washington, DC) 1988, 88, 899. https://doi.org/10.1021/cr00088a005

Cited by

  1. Pyrazinamidase via Quantum Mechanical Calculations vol.118, pp.34, 2014, https://doi.org/10.1021/jp504096d
  2. Crystal Structures, Thermal Behavior Analysis and Thermal Safety of Two Energetic Salts of Hydrazinyl-1,2,4,5-tetrazine with 3,5-Dinitrosalicylic Acid pp.2210-3171, 2018, https://doi.org/10.1007/s40242-018-8169-z
  3. High-Pressure Studies of Hydrogen-Bonded Energetic Material 3,6-Dihydrazino-s-tetrazine Using DFT vol.3, pp.8, 2010, https://doi.org/10.1021/acsomega.8b00806