References
- Tang, C. W.; Van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913. https://doi.org/10.1063/1.98799
- Wu, Z.; Jiao, B.; Zhao, X.; Hou, L.; Wang, H.; Gao, Y.; Qiu, Y. Thin Solid Films. 2009, 517, 3382. https://doi.org/10.1016/j.tsf.2008.12.015
- Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610. https://doi.org/10.1063/1.343409
- Kim, D. U.; Paik, S. H.; Kim, S. -H.; Tsutsui, T. Synth. Meter. 2001, 123, 43. https://doi.org/10.1016/S0379-6779(00)00568-3
- Lee, K. H.; Kang, L. K.; Lee, J. Y.; Kang, S.; Jeon, S. O.; Yook, K. S.; Lee, J. Y.; Yoon, S. S. Adv. Funct. Mater. 2010, 20, 1345. https://doi.org/10.1002/adfm.200901895
- Kim, I. H.; Byun, K. N.; Yoo, H. S. Curr. Appl. Phys. 2005, 5, 345. https://doi.org/10.1016/j.cap.2004.01.046
- Zhang, X. H.; Chen, B. J.; Lin, X. Q.; Wong, O. Y.; Lee, C. S.; Kwong, H. L.; Lee, S. T.; Wu, S. K. Chem. Mater. 2001, 13, 1565. https://doi.org/10.1021/cm0008664
- Yao, Y. S.; Zhou, Q. X.; Wang, X. S.; Wang, Y.; Zhang, B. W. Adv. Funct. Mater. 2007, 17, 93. https://doi.org/10.1002/adfm.200600055
- Zhao, P.; Tang, H.; Zhang, Q.; Pi, Y.; Xu, M.; Sun, R.; Zhu, W. Dyes. Pigments. 2009, 82, 316. https://doi.org/10.1016/j.dyepig.2009.01.016
- Lee, K. H.; Park, M. H.; Kim, S. M.; Kim, Y. K.; Yoon, S. S. Jpn. J. Appl. Phys. 2010, 49, 08JG02. https://doi.org/10.1143/JJAP.49.08JG02
- Chen, C. H. Chem. Mater. 2004, 16, 4389. https://doi.org/10.1021/cm049679m
- Chen, C. H; Tang, C. W.; Chi, J.; Klubek, K. P. Thin Solid Films 2000, 363, 327. https://doi.org/10.1016/S0040-6090(99)01010-X
- Li, X.; Wei, D.-Y.; Huang, S.-J.; Zheng, Y.-Q. J. Solid. State. Chem. 2009, 182, 95. https://doi.org/10.1016/j.jssc.2008.09.018
- Nematollahi, D.; Akaberi, N. Molecules 2001, 6, 639. https://doi.org/10.3390/60700639
- Hata, N.; Tanaka, I. J. Chem. Phys. 1962, 36, 2072. https://doi.org/10.1063/1.1732830
- Forster, T. Discuss. Faraday Soc. 1959, 27, 7. https://doi.org/10.1039/df9592700007
- Dexter, L. D. J. Chem. Phys. 1953, 21, 836. https://doi.org/10.1063/1.1699044
- Rolon, J. E.; Ulloa, S. E. Phys. Rev. B 2009, 79, 245309. https://doi.org/10.1103/PhysRevB.79.245309
Cited by
- Efficient deep-blue and white organic light-emitting diodes based on triphenylsilane-substituted anthracene derivatives vol.21, pp.35, 2011, https://doi.org/10.1039/c1jm12097b
- ChemInform Abstract: Red Fluorescent Organic Light-Emitting Diodes Using Modified Pyran-Containing DCJTB Derivatives. vol.42, pp.9, 2011, https://doi.org/10.1002/chin.201109218
- Synthesis, Properties and Applications of Biphenyl Functionalized 9,9-Bis(4-diphenylaminophenyl)fluorenes as Bifunctional Materials for Organic Electroluminescent Devices vol.2012, pp.27, 2012, https://doi.org/10.1002/ejoc.201200641
- Dicyanomethylene-4H-pyran chromophores for OLED emitters, logic gates and optical chemosensors vol.48, pp.49, 2012, https://doi.org/10.1039/c2cc31581e
- Design, synthesis, and biological evaluation of 4-H pyran derivatives as antimicrobial and anticancer agents vol.26, pp.11, 2017, https://doi.org/10.1007/s00044-017-1982-y
- Color-Tunable Heterodinuclear Pt(II)/B(III) and Pt(II)/Ir(III) Arrays with N^O-julolidine Ligands vol.56, pp.9, 2017, https://doi.org/10.1021/acs.inorgchem.6b02728
- Experimental and computational studies of novel ferrocene-pyranylidene dyads: Synthesis, characterization and electrochemical and linear optical properties vol.32, pp.11, 2018, https://doi.org/10.1002/aoc.4533
- Facile synthesis of two-dimensional Ruddlesden–Popper perovskite quantum dots with fine-tunable optical properties vol.13, pp.1, 2018, https://doi.org/10.1186/s11671-018-2664-5
- Highly Efficient Red Organic Light-Emitting Diodes Using Methylcyclohexylpyran-Containing Emitters vol.32, pp.12, 2010, https://doi.org/10.5012/bkcs.2011.32.12.4419
- Red Fluorescent 4-(Dicyanomethylene)-2-norbonenyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJNB) for Organic Light-Emitting Diodes (OLEDs) vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1391
- Donor-Acceptor-Donor Type Red Fluorescent Emitters Containing Adamandane-substituted Julolidines for OLEDs vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2787
- Synthesis of Donor-Aromatic-Donor Type π-conjugated Materials and their Application to Red Fluorescent Organic Light-Emitting Diodes vol.563, pp.1, 2010, https://doi.org/10.1080/15421406.2012.689155
- Red Fluorescent Organic Light-Emitting Diodes (OLEDs) using 4-(1,3-Indanedione-2-yl)-2-(adaman-1-yl)-6-(10-aza-2,3,4,5,6,7-hexahydronaphtio[1,8-gh]chromen-10(1H)-one-9-enyl)-4H-pyran vol.568, pp.1, 2012, https://doi.org/10.1080/15421406.2012.706551
- Synthesis and Electroluminescent Properties of Red Fluorescent 2-(6,8-di-tert-butyl-2-(4-((3,5-di-tert-butylphenyl)(4-(trimethylsilyl)phenyl)amino)styryl)-4H-chromen-4-ylidene)malononitrile (DCCTBPA) vol.568, pp.1, 2010, https://doi.org/10.1080/15421406.2012.706556
- Red Fluorescent DCM Derivatives with the Bulky-substituents on Pyran and Julolidine Moieties for Organic Light-Emitting Diodes (OLEDs) vol.33, pp.10, 2010, https://doi.org/10.5012/bkcs.2012.33.10.3433
- Synthesis and Electroluminescent Properties of Julolidine-π-Juloidine Type Materials with the Bulky Adamantane Groups vol.33, pp.11, 2010, https://doi.org/10.5012/bkcs.2012.33.11.3883
- Synthesis, spectroscopic and DFT studies of novel fluorescent dyes: 3-Aminoimidazo[1,2-a]pyridines possessing 4-pyrone moieties vol.117, pp.None, 2010, https://doi.org/10.1016/j.saa.2013.09.056
- Red Fluorescent Donor-π-Acceptor Type Materials based on Chromene Moiety for Organic Light-Emitting Diodes vol.35, pp.6, 2010, https://doi.org/10.5012/bkcs.2014.35.6.1670
- Synthesis and Computational Studies of Molecular Structure and Vibrational Spectra of 2-Amino-4-(4-Nitrophenyl)-4H-Pyrano-[3,2-H]Quinolines vol.86, pp.4, 2010, https://doi.org/10.1007/s10812-019-00885-3
- Transition metal-catalyzed C-N cross-coupling reaction of bromine-substituted pyranilidene derivatives: synthesis, characterization, and optical properties study of pyran-based chromophores vol.17, pp.10, 2010, https://doi.org/10.1007/s13738-020-01956-5