DOI QR코드

DOI QR Code

Syntheses and Thermal Behaviors of Rb(FOX-7)·H2O and Cs(FOX-7)·H2O

  • Luo, Jinan (Department of Chemical Engineering, Northwest University) ;
  • Xu, Kangzhen (Department of Chemical Engineering, Northwest University) ;
  • Wang, Min (Department of Chemical Engineering, Northwest University) ;
  • Song, Jirong (Conservation Technology Department, the Palace Museum) ;
  • Ren, Xiaolei (Department of Chemical Engineering, Northwest University) ;
  • Chen, Yongshun (Department of Chemical Engineering, Northwest University) ;
  • Zhao, Fengqi (Xi'an Modern Chemistry Research Institute)
  • Received : 2010.05.17
  • Accepted : 2010.08.22
  • Published : 2010.10.20

Abstract

Two new energetic organic alkali metal salts, 1,1-diamino-2,2-dinitroethylene rubidium salt [Rb(FOX-7)${\cdot}H_2O$] and 1,1-diamino-2,2-dinitroethylene cesium salt [Cs(FOX-7)${\cdot}H_2O$], were synthesized by reacting of 1,1-diamino-2,2-dinitroethylene (FOX-7) and rubidium chloride or cesium chloride in alkali methanol aqueous solution, respectively. The thermal behaviors of Rb(FOX-7)${\cdot}H_2O$ and Cs(FOX-7)${\cdot}H_2O$ were studied with DSC and TG methods. The critical temperatures of thermal explosion of the two compounds are 216.22 and $223.73^{\circ}C$, respectively. Specific heat capacities of the two compounds were determined with a micro-DSC method, and the molar heat capacities are 217.46 and $199.47\;J\;mol^{-1}\;K^{-1}$ at 298.15 K, respectively. The adiabatic times-to-explosion were also calculated to be a certain value of 5.81 - 6.36 s for Rb(FOX-7)${\cdot}H_2O$, and 9.92 - 10.54 s for Cs(FOX-7)${\cdot}H_2O$. After FOX-7 becoming alkali metal salts, thermal decomposition temperatures of the compounds heighten with the rise of element period, but thermal decomposition processes become intense.

Keywords

References

  1. Latypov, N. V.; Bergman, J.; Langlet, A.; Wellmar, U.; Bemm, U. Tetrahedron 1998, 54, 11525. https://doi.org/10.1016/S0040-4020(98)00673-5
  2. Bemm, U.; Otmark, H. Acta Cryst. C 1998, 54, 1997. https://doi.org/10.1107/S0108270198007987
  3. Gindulyte, A.; Massa, L.; Huang, L.; Karle, J. J. Phys. Chem. A 1999, 103, 11045. https://doi.org/10.1021/jp991794a
  4. Sorescu, D. C.; Boatz, J. A.; Thopmson, D. L. J. Phys. Chem. A 2001, 105, 5010. https://doi.org/10.1021/jp010289m
  5. Ji, G. F.; Xiao, H. M.; Dong, H. S.; Gong, X. D.; Li J. S.; Wang, Z. Y. Acta Chim. Sinica 2001, 59, 39. (in Chinese)
  6. Bellamy, A. J.; Goede, P.; Sandberg, C.; Latypov, N. V. The Proceedings of the 33th International Annual Conference ICT. Karlsruke: Germany, 2002.
  7. Sorescu, D. C.; Boatz, J. A.; Thompson, D. L. J. Phys. Chem. B 2003, 107, 8953. https://doi.org/10.1021/jp030258m
  8. Cai, H. Q.; Shu, Y. J.; Huang, H.; Cheng, B. B.; Li, J. S. J. Org. Chem. 2004, 69, 4369. https://doi.org/10.1021/jo030395f
  9. Cai, H. Q.; Shu, Y. J.; Yu, W. F.; Li, J. S.; Cheng, B. B. Acta Chim. Sinica 2004, 62, 295. (in Chinese)
  10. Herve, G.; Jacob, G.; Latypov, N. Tetrahedron 2005, 61, 6743. https://doi.org/10.1016/j.tet.2005.05.010
  11. Sorescu, D. C.; Boatz, J. A.; Thompson, D. L. J. Phys. Chem. B 2005, 109, 1451. https://doi.org/10.1021/jp046193k
  12. Gao, H. X.; Zhao F. Q.; Hu, R. Z.; Pan, Q.; Wang, B. Z.; Yang, X. W.; Gao, Y.; Gao, S. L.; Shi, Q. Z, Chin. J. Chem. 2006, 24, 177.
  13. Anniyappan, M.; Talawar, M. B.; Gore, G. M.; Venugopalan, S.; Gandhe, B. R. J. Hazard. Mater. 2006, 137, 812. https://doi.org/10.1016/j.jhazmat.2006.03.034
  14. Trzcinski,W. A.; Cudzilo, S.; Chylek, Z.; Szymanczyk, L. J. Hazard. Mater. 2006, 157, 605. https://doi.org/10.1016/j.jhazmat.2008.01.026
  15. Evers, J.; Klapotke, T. M.; Mayer, P.; Oehlinger, G.; Welch, J. Inorg. Chem. 2006, 45, 4996. https://doi.org/10.1021/ic052150m
  16. Zerilli, F. J.; Kuklja, M. M. J. Phys. Chem. A 2006, 110, 5173. https://doi.org/10.1021/jp0605754
  17. Zerilli, F. J.; Kuklja, M. M. J. Phys. Chem. A 2007, 111, 1721. https://doi.org/10.1021/jp067709y
  18. Herve, G.; Jacob, G.; Latypov, N. Tetrahedron 2007, 63, 953. https://doi.org/10.1016/j.tet.2006.11.031
  19. Majano, G.; Mintova, S.; Bein, T.; Klapötke, T. M. J. Phys. Chem. C 2007, 111, 3394. https://doi.org/10.1021/jp067817k
  20. Latypov, N. V.; Johansson, M.; Holmgren, E.; Sizova, E. V.; Sizov, V. V.; Bellamy, A. J. Org. Process Res. Dev. 2007, 11, 56 https://doi.org/10.1021/op068010t
  21. Fan, X. Z.; Li, J. Z.; Liu, Z. R. J. Phys. Chem. A 2007, 111, 13291. https://doi.org/10.1021/jp075889l
  22. Xu, K. Z.; Song, J. R.; Zhao, F. Q.; Cao, Z. H.; Ma, H. X.; Hu, R. Z.; Gao, H. X.; Huang, J. Acta Chim. Sinica 2007, 65, 2827. (in Chinese)
  23. Zhao, J. J.; Liu, H. Comp. Mater. Sci. 2008, 42, 698. https://doi.org/10.1016/j.commatsci.2007.10.008
  24. Kimmel, A. V.; Sushko, P. V.; Shluger, A. L.; Kuklja, M. M. J. Phys. Chem. A 2008, 112, 4496. https://doi.org/10.1021/jp800930d
  25. Buszewski, B.; Michel, M.; Cudzilo, S.; Chylek, Z. J. Hazard. Mater. 2009, 164, 1051. https://doi.org/10.1016/j.jhazmat.2008.09.018
  26. Xing, X. L.; Xue, L.; Zhao, F. Q.; Gao, H. X.; Hu, R. Z. Thermochim. Acta 2009, 491, 35. https://doi.org/10.1016/j.tca.2009.02.019
  27. Mathews, K. Y.; Ball, D. M. J. Phys. Chem. A 2009, 113, 4855. https://doi.org/10.1021/jp901342e
  28. Ahn, J. H.; Kim, J. K.; Kim, H. S.; Kim, E. J.; Koo, K. K. J. Chem. Eng. Data 2009, 54, 3259. https://doi.org/10.1021/je900235s
  29. Rajappa, S. Tetrahedron 1981, 37, 1453. https://doi.org/10.1016/S0040-4020(01)92085-X
  30. Xu, K. Z.; Song, J. R.; Yang, X.; Chang, C. R.; Yang, X. K.; Ma, H. X.; Huang, J.; Zhao, F. Q. J. Mole. Stru. 2008, 891, 340. https://doi.org/10.1016/j.molstruc.2008.04.004
  31. Chang, C. R.; Xu, K. Z.; Song, J. R.; Yan, B.; Ma, H. X.; Gao, H. X.; Zhao, F. Q. Acta Chim. Sinica 2008, 66, 1399 (in Chinese).
  32. Xu, K. Z.; Zhao, F. Q.; Song, J. R.; Chang, C. R.; Li, M.; Wang, Y. Y.; Hu, R. Z. Chin. J. Chem. 2009, 27, 665. https://doi.org/10.1002/cjoc.200990109
  33. Xu, K. Z.; Chang, C. R.; Song, J. R.; Zhao, F. Q.; Ma, H. X.; Lv, X. Q.; Hu, R. Z. Chin. J. Chem. 2008, 26, 495. https://doi.org/10.1002/cjoc.200890093
  34. Xu, K. Z.; Wang, F.; Ren, Y. H.; Li, W. H.; Zhao, F. Q.; Chang, C. R.; Song, J. R. Chin. J. Chem. 2010, 28, 583. https://doi.org/10.1002/cjoc.201090116
  35. She, J. N.; Xu, K. Z.; Zhang, H.; Huang, J.; Zhao, F. Q.; Song, J. R. Acta Chim. Sinica 2009, 67, 2645. (in Chinese)
  36. Xu, K. Z.; Zhao, F. Q.; Song, J. R.; Ren, X. L.; Gao, H. X.; Xu, S. Y.; Hu, R. Z. Bull. Korean Chem. Soc. 2009, 30, 2259. https://doi.org/10.5012/bkcs.2009.30.10.2259
  37. Xu, K. Z.; Zuo, X. G.; Song, J. R.; Wang, F.; Huang, J.; Chang, C. R. Chem. J. Chin. Univer. 2010, 31, 638. (in Chinese)
  38. Kissinger, H. E. Anal. Chem. 1957, 29, 1702. https://doi.org/10.1021/ac60131a045
  39. Ozawa, T. Bull. Chem. Soc. Jpn. 1965, 38, 1881. https://doi.org/10.1246/bcsj.38.1881
  40. Hu, R. Z.; Gao, S. L.; Zhao, F. Q.; Shi, Q. Z.; Zhang, T. L.; Zhang, J. J. Thermal Analysis Kinetics, 2nd ed.; Science Press: Beijing, 2008. (in Chinese)
  41. Xu, K. Z.; Song, J. R.; Zhao, F. Q.; Ma, H. X.; Gao, H. X.; Chang, C. R.; Ren, Y. H.; Hu, R. Z. J. Hazard. Mater. 2008, 158, 333. https://doi.org/10.1016/j.jhazmat.2008.01.077
  42. Xu, K. Z.; Song, J. R.; Zhao, F. Q.; Heng, S. Y.; Ding, L.; Wang, Y. Y.; Hu, R. Z. J. Chin. Chem. Soc. 2009, 56, 524.
  43. Xu, K. Z.; Ren, X. L.; Song, J. R.; Zhao, F. Q.; Ding, L.; Yi, J. H.; Wang, Y. Y. Chin. J. Chem. 2009, 27, 1907. https://doi.org/10.1002/cjoc.200990320
  44. Ma, H. X.; Yan, B.; Li, Z. N.; Song, J. R.; Hu, R. Z. J.Therm. Anal. Calorim. 2009, 95, 437. https://doi.org/10.1007/s10973-008-9255-0
  45. Smith, L. C. Thermochim. Acta 1975, 13, 1. https://doi.org/10.1016/0040-6031(75)80060-8

Cited by

  1. Nonisothermal decomposition kinetics, specific heat capacity, and adiabatic time-to-explosion of Zn(NH3)2(FOX-7)2 vol.116, pp.2, 2014, https://doi.org/10.1007/s10973-013-3589-y
  2. (DNANT= Dinitroacetonitrile) vol.118, pp.7, 2014, https://doi.org/10.1021/jp411445h
  3. Non-isothermal decomposition kinetics of [Cu(en)2H2O](FOX-7)2·H2O vol.30, pp.4, 2014, https://doi.org/10.1007/s40242-014-3549-5
  4. Synthesis, structural characterization, and thermal properties of a new energetic zinc-FOX-7 complex vol.66, pp.20, 2010, https://doi.org/10.1080/00958972.2013.848276
  5. Syntheses, crystal structures, thermal behaviors, and sensitivities of new initiator compositions: rubidium salts of trinitrophenol and trinitroresorcinol vol.67, pp.11, 2010, https://doi.org/10.1080/00958972.2014.932353
  6. Synthesis and characterization of a new cadmium complex based on 1,1-diamino-2,2-dinitroethylene vol.67, pp.15, 2014, https://doi.org/10.1080/00958972.2014.951343