DOI QR코드

DOI QR Code

Catalytic Ozonation of Phenol in Aqueous Solution by Co3O4 Nanoparticles

  • Dong, Yuming (School of Chemical and Material Engineering, Jiangnan University) ;
  • Wang, Guangli (School of Chemical and Material Engineering, Jiangnan University) ;
  • Jiang, Pingping (School of Chemical and Material Engineering, Jiangnan University) ;
  • Zhang, Aimin (School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry, Nanjing University) ;
  • Yue, Lin (School of Food Science and Technology, Jiangnan University) ;
  • Zhang, Xiaoming (School of Food Science and Technology, Jiangnan University)
  • Received : 2010.06.14
  • Accepted : 2010.08.20
  • Published : 2010.10.20

Abstract

The degradation efficiencies of phenol in aqueous solution were studied by semi-continuous experiments in the processes of ozone alone, ozone/bulky $Co_3O_4$ and ozone/$Co_3O_4$ nanoparticles. Catalyst samples (bulky $Co_3O_4$ and $Co_3O_4$ nanoparticles) were characterized by X-ray diffraction and transmission electron microscopy. The Brunauer-Emmett-Teller surface area, $pH_{pzc}$ and the density of surface hydroxyl groups of the two catalyst samples were also measured. The catalytic activity of $Co_3O_4$ nanoparticles was investigated for the removal of phenol in aqueous solutions under different reaction temperatures. Tert-butyl alcohol had little effect on the catalytic ozonation processes. Based on these results, the possible catalytic ozonation mechanism of phenol by $Co_3O_4$ nanoparticles was proposed as a reaction process between ozone molecules and pollutants.

Keywords

References

  1. Liotta, L. F.; Gruttadauria, M.; DiCarlo, G.; Perrini, G.; Librando, V. J. Hazard. Mater. 2009, 162, 588. https://doi.org/10.1016/j.jhazmat.2008.05.115
  2. Faria, P. C. C.; Orfao, J. J. M.; Pereira, M. F. R. Catal. Lett. 2009, 127, 195. https://doi.org/10.1007/s10562-008-9670-7
  3. Kasprzyk-Hordern, B.; Ziolek, M.; Nawrocki, J. Appl. Catal. B: Environ. 2003, 46, 639. https://doi.org/10.1016/S0926-3373(03)00326-6
  4. Dong, Y.; He, K.; Zhao, B.; Yin, Y.; Yin, L.; Zhang, A. Catal. Commun. 2007, 8, 1599. https://doi.org/10.1016/j.catcom.2007.01.016
  5. Jung, H.; Choi, H. Appl. Catal. B: Environ. 2006, 66, 288. https://doi.org/10.1016/j.apcatb.2006.03.009
  6. Jung, H.; Park, H.; Kim, J.; Lee, J. H.; Hur, H. G.; Myung, N. V.; Choi, H. Environ. Sci. Technol. 2007, 41, 4741. https://doi.org/10.1021/es0702768
  7. Jung, H.; Kim, J. W.; Choi, H.; Lee, J. H.; Hur, H. G. Appl. Catal. B: Environ. 2008, 83, 208. https://doi.org/10.1016/j.apcatb.2008.02.016
  8. Yang, Y.; Ma, J.; Qin, Q.; Zhai, X. J. Mol. Catal. A: Chem. 2007, 267, 41. https://doi.org/10.1016/j.molcata.2006.09.010
  9. Rosal, R.; Rodríguez, A.; Gonzalo, M. S.; García-Calvo, E. Appl. Catal. B: Environ. 2008, 84, 48. https://doi.org/10.1016/j.apcatb.2008.03.003
  10. Dong, Y.; Yang, H.; He, K.; Song, S.; Zhang, A. Appl. Catal. B: Environ. 2009, 85, 155. https://doi.org/10.1016/j.apcatb.2008.07.007
  11. Dong, Y.; He, K.; Yin, L.; Zhang, A. Nanotechnology 2007, 18, 435602. https://doi.org/10.1088/0957-4484/18/43/435602
  12. Zhang, T.; Li, C.; Ma, J.; Tian, H.; Qiang, Z. Appl. Catal. B: Environ. 2008, 82, 131. https://doi.org/10.1016/j.apcatb.2008.01.008
  13. Laiti, E.; Ohman, L. O.; Nordin, J.; Sjoberg, S. J. Colloid Interface Sci. 1995, 175, 230. https://doi.org/10.1006/jcis.1995.1451
  14. Tamura, H.; Tanaka, A.; Mita, K.; Furuichi, R. J. Colloid Interface Sci. 1999, 209, 225. https://doi.org/10.1006/jcis.1998.5877
  15. Stumm, W. Chemistry of the Soild-Water Interface; John Wiley & Sons: New York, 1992; p 15.
  16. Newcombe, G.; Hayes, R.; Drikas, M. Colloid Surface. A 1993, 78, 65. https://doi.org/10.1016/0927-7757(93)80311-2
  17. Dong, Y.; Yang, H.; He, K.; Wu, X.; Zhang, A. Appl. Catal. B: Environ. 2008, 82, 163. https://doi.org/10.1016/j.apcatb.2008.01.023
  18. Bremner, D. H.; Burgess, A. E.; Houllemare, D.; Namkung, K. C. Appl. Catal. B: Environ. 2006 63, 15. https://doi.org/10.1016/j.apcatb.2005.09.005
  19. Lesko, T.; Colussi, A. J.; Hoffmann, M. R. Environ. Sci. Technol. 2006, 40, 6818. https://doi.org/10.1021/es052558i
  20. Wu, C.; Liu, X.; Wei, D.; Fan, J.; Wang, L. Water Res. 2001, 35, 3927. https://doi.org/10.1016/S0043-1354(01)00133-6
  21. Santos, A.; Yustos, P.; Quintanilla, A.; Ruiz, G.; Garcia-Ochoa, F. Appl. Catal. B: Environ. 2005, 61, 323. https://doi.org/10.1016/j.apcatb.2005.06.006
  22. Santos, A.; Yustos, P.; Quintanilla, A.; Rodriguez, S.; Garcia-Ochoa, F. Appl. Catal. B: Environ. 2002, 39, 97. https://doi.org/10.1016/S0926-3373(02)00087-5
  23. Field, R. J.; Raghavan, N. V.; Brummer, J. G. J. Phys. Chem. 1982, 86, 2443. https://doi.org/10.1021/j100210a040
  24. Hoigné, J.; Bader, H. Water Res. 1983, 17, 173. https://doi.org/10.1016/0043-1354(83)90098-2
  25. Carbajo, M.; Beltrán, F. J.; Medina, F.; Gimeno, O.; Rivas, F. J. Appl. Catal. B: Environ. 2006, 67, 177. https://doi.org/10.1016/j.apcatb.2006.04.019
  26. Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, W. P. J. Phys. Chem. Ref. Data 1988, 17, 513. https://doi.org/10.1063/1.555805
  27. Zhao, L.; Sun, Z.; Ma, J. Environ. Sci. Technol. 2009, 43, 4157. https://doi.org/10.1021/es900084w

Cited by

  1. Catalytic Ozonation of Phenol vol.33, pp.10, 2011, https://doi.org/10.4491/KSEE.2011.33.10.731
  2. Facile Preparation of ZnO Nanocatalysts for Ozonation of Phenol and Effects of Calcination Temperatures vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.215
  3. Synthesis of Hexagonal Co3O4 and Ag/Co3O4 Composite Nanosheets and their Electrocatalytic Performances vol.24, pp.4, 2013, https://doi.org/10.1007/s10876-013-0592-1
  4. Facile synthesis of Co3O4 and Ag/Co3O4 nanosheets and their electrocatalytic properties vol.67, pp.3, 2013, https://doi.org/10.1007/s10971-013-3116-4
  5. Application of a Novel Semiconductor Catalyst, CT, in Degradation of Aromatic Pollutants in Wastewater: Phenol and Catechol vol.2014, pp.1687-4129, 2014, https://doi.org/10.1155/2014/524141
  6. Magnetic Cobalt and Cobalt Oxide Nanoparticles in Hyperbranched Polyester Polyol Matrix vol.2017, pp.1687-9511, 2017, https://doi.org/10.1155/2017/7607658
  7. Preparation of MgO nanocrystals and catalytic mechanism on phenol ozonation vol.7, pp.69, 2017, https://doi.org/10.1039/C7RA07553G
  8. Promoting catalytic ozonation of phenol over graphene through nitrogenation and Co 3 O 4 compositing vol.50, pp.None, 2010, https://doi.org/10.1016/j.jes.2016.03.029
  9. Nanocomposite of Ag nanoparticles and catalytic fluorescent carbon dots for synergistic bactericidal activity through enhanced reactive oxygen species generation vol.31, pp.40, 2020, https://doi.org/10.1088/1361-6528/ab996f
  10. Technology Advances in Phenol Removals: Current Progress and Future Perspectives vol.11, pp.8, 2010, https://doi.org/10.3390/catal11080998