DOI QR코드

DOI QR Code

Speciation of Chromium in Water Samples with Homogeneous Liquid-Liquid Extraction and Determination by Flame Atomic Absorption Spectrometry

  • Received : 2010.04.05
  • Accepted : 2010.08.16
  • Published : 2010.10.20

Abstract

A novel method was developed for the speciation of chromium in natural water samples based on homogeneous liquid-liquid extraction and determination by flame atomic absorption spectrometry (FAAS). In this method, Cr(III) reacts with a new Schiff's base ligand to form the hydrophobic complex, which is subsequently entrapped in the sediment phase, whereas Cr(VI) remained in aqueous phase. The Cr(VI) assay is based on its reduction to Cr(III) by the addition of sodium sulfite to the sample solution. Thus, separation of Cr(III) and Cr(VI) could be realized. Homogeneous liquid-liquid extraction based on the pH-independent phase-separation process was investigated using a ternary solvent system (water-tetrabutylammonium ion ($TBA^+$)-chloroform) for the preconcentration of chromium. The phase separation phenomenon occurred by an ion-pair formation of TBA and perchlorate ion. Then sedimented phase was separated using a $100\;{\mu}L$ micro-syringe and diluted to 1.0 mL with ethanol. The sample was introduced into the flame by conventional aspiration. After the optimization of complexation and extraction conditions such as pH = 9.5, [ligand] = $1.0{\times}10^{-4}\;M$, [$TBA^+$] = $2.0{\times}10^{-2}\;M$, [$CHCl_3$] = $100.0\;{\mu}L$ and [$ClO_4$] = $2.0{\times}10{-2}\;M$, a preconcentration factor (Va/Vs) of 100 was obtained for only 10 mL of the sample. The relative standard deviation was 2.8% (n = 10). The limit of detection was sufficiently low and lie at ppb level. The proposed method was applied for the extraction and determination of chromium in natural water samples with satisfactory results.

Keywords

References

  1. Jen, J. F.; Wu, M. H.; Yang, T. C. Anal. Chim. Acta 1997, 339, 251. https://doi.org/10.1016/S0003-2670(96)00482-5
  2. Li, Y.; Hu, B.; Jiang, Z.; Wu, Y. Anal Lett. 2006, 39, 809. https://doi.org/10.1080/00032710600611574
  3. Krishna, P. G.; Gladis, J. M.; Rambabu, U.; Raob, T. P.; Naidu, G. R. K. Talanta 2004, 63, 541. https://doi.org/10.1016/j.talanta.2003.11.032
  4. Subramanian, K. S. Anal Chem. 1988, 60, 11. https://doi.org/10.1021/ac00152a004
  5. Karosi, R.; Andruch, V.; Posta, J.; Balogh, J. Microchem J. 2006, 82, 61. https://doi.org/10.1016/j.microc.2005.07.005
  6. Ball, J. W.; McCleskey, R. B. Talanta 2003, 61, 305. https://doi.org/10.1016/S0039-9140(03)00282-0
  7. Zhu, X. S.; Hu, B.; Jiang, Z. C.; Li, M. F. Water Res. 2005, 39, 589. https://doi.org/10.1016/j.watres.2004.11.006
  8. Shemirani, F.; Dehghan Abkenar, Sh.; Mirroshandel, A. A.; Salavati-Niasari, M.; Kozani, R. R. Anal. Sci. 2003, 19, 1453. https://doi.org/10.2116/analsci.19.1453
  9. Shemirani, F.; Dehghan Abkenar, Sh.; Kozani, R. R.; Salavati-Niasari, M.; Mirroshandel, A. A. Candian J. Anal. Sci. Spec. 2004, 49, 31.
  10. Sun, Z.; Liang, P. Microchim Acta 2008, 162, 121. https://doi.org/10.1007/s00604-007-0942-0
  11. Tang, A. N.; Jiang, D. Q.; Jiang, Y.; Wang, S. W.; Yan, X. P. J Chromatogr A 2004, 1036, 183. https://doi.org/10.1016/j.chroma.2004.02.065
  12. Borai, E. H.; El-Sofany, E. A.; Abdel-Halim, A. S. Trends Anal Chem. 2002, 21, 741. https://doi.org/10.1016/S0165-9936(02)01102-0
  13. Anthemidis, A. N.; Zachariadis, G. A.; Koussoroplis, S-JV.; Stratis, J. A. Talanta 2002, 57, 15. https://doi.org/10.1016/S0039-9140(01)00676-2
  14. Mahmoud, M. E.; Yakout, A. A.; Ahmed, S. B.; Osman, M. M. Journal of Liquid Chromatography & Related Technologies 2008, 31, 2475. https://doi.org/10.1080/10826070802319750
  15. Jiménez de Blas, O.; Chamorro Alonso, M. Analysis 2007, 38, 2091.
  16. Wu, T.; Jiang, Y.; Han, D.; Wang, F.; Zhu, J. Microchim Acta 2005, 159, 333. https://doi.org/10.1007/s00604-007-0772-5
  17. Ren, Y.; Fan, Z.; Wang, J. Microchim Acta 2006, 158, 227. https://doi.org/10.1007/s00604-006-0680-0
  18. Kendüzler, E.; Yalçınkaya, Ö.; Baytak, S.; Türker A.R. Microchim Acta 2008, 160, 389. https://doi.org/10.1007/s00604-007-0773-4
  19. Themelis, D. G.; Kika, F. S.; Economou, A. Talanta 2006, 69, 615. https://doi.org/10.1016/j.talanta.2005.10.031
  20. Chen, D. H.; He, M.; Huang, C. Z.; Hu, B. Atomic Spectroscopy 2008, 29, 165.
  21. Sun, Y. C.; Lin, C. Y.; Wu, S. F.; Chung, Y. T. Spectrochim Acta - Part B At Spectrosc 2006, 61, 230. https://doi.org/10.1016/j.sab.2006.01.007
  22. Hemmatkhah, P.; Bidari, A.; Jafarvand, S.; Milani Hosseini, M. R.; Assadi, Y. Microchim Acta 2009, 166, 69. https://doi.org/10.1007/s00604-009-0167-x
  23. Takagai, Y.; Maekoya, C.; Igarashi, S. Nippon Kagaku Kaishi. 2000, 4, 291.
  24. Igarashi, S.; Arai, T.; Kawakami, T. A. Bunsek kagaku. 1994, 43, 1183. https://doi.org/10.2116/bunsekikagaku.43.1183
  25. Igarashi, S.; Ide, N.; Takagai, Y. Anal. Chim. Acta 2000, 424, 263. https://doi.org/10.1016/S0003-2670(00)01082-5
  26. Ghiasvand, A. R.; Shadabi, S.; Mohagheghzadeh, E.; Hashemi, P. Talanta 2005, 66, 912. https://doi.org/10.1016/j.talanta.2004.12.041
  27. Ebrahimzadeh, H.; Yamini, Y.; Kamarei, F.; Shariati, S. Anal. Chim. Acta 2007, 594, 93. https://doi.org/10.1016/j.aca.2007.05.013
  28. Sudo, T.; Igarashi, S. Talanta 1996, 43, 233. https://doi.org/10.1016/0039-9140(95)01748-8
  29. Andrade, J. C.; Cuelbas, C. J.; Eiras, S. P. Talanta 1998, 47, 719. https://doi.org/10.1016/S0039-9140(98)00125-8
  30. Jamali, M. R.; Assadi, Y., Shemirani, F. Sep. Sci. Technol. 2007, 42, 3503. https://doi.org/10.1080/01496390701508784
  31. Dehghan Abkenar, Sh.; Hosseini, M.; Salavati-Niasari, M. Asian. J. Chem. 2008, 20, 4291.
  32. Shamsipur, M.; Ghiasvand, A. R.; Sharghi, H.; Naeimi, H. Anal. Chim. Acta 2000, 408, 271. https://doi.org/10.1016/S0003-2670(99)00873-9
  33. Dalman, O.; Tufekci, M.; Nohut, S.; Guner, S.; Karabocek, S. J. Pharm. Biomed. Anal. 2002, 27, 183. https://doi.org/10.1016/S0731-7085(01)00519-2
  34. Ganjali, M. R.; Ghesmi, A.; Hosseini, M.; Pourjavid, M. R.; Rezapour, M.; Shamsipur, M.; Salavati-Niasari, M. Sensors and Actuators B. 2005, 105, 334. https://doi.org/10.1016/j.snb.2004.06.016
  35. Hosseini, M.; Bagheri Sadeghi, H.; Rahimi, M.; Salavati-Niasari, M.; Dehghan Abkenar, Sh.; Alizadeh, K.; Ganjalie, M. R. Electroanalysis 2009, 21, 859.
  36. Paleologos, E. K.; Stalikas, C. D.;Tzouwara-Karayanni, S. M.; Karayannis, M. I. Anal. Chim. Acta 2001, 436, 49. https://doi.org/10.1016/S0003-2670(01)00884-4
  37. Dondurmacioglu, F.; Filik, H. J. Anal. Chem. 2009, 64, 455. https://doi.org/10.1134/S1061934809050050
  38. Matos, G. D.; dos Reis, E. B.; Costa, A. C. S.; Ferreira, S. L. S. Microchem J. 2009, 92, 135. https://doi.org/10.1016/j.microc.2009.02.009
  39. Li, J.; Liang, P.; Shi, T. Q.; Lu, H. B. At Spectrosc. 2003, 24, 169.
  40. Memon, J. U. R.; Memon, S. Q.; Bhanger, M. I.; Khuhware, M. Y. J. Hazard Mat. 2009, 163, 511. https://doi.org/10.1016/j.jhazmat.2008.07.001
  41. Bayak. S.; Turker, A. R. Microchim. Acta 2005, 149,109. https://doi.org/10.1007/s00604-004-0294-3
  42. Abliz, S.; Wang, J. D.; Horshida, B. Spectrosc Spect Anal 2005, 25, 2082.
  43. Agrawal, Y. K.; Sharma, K. R. Talanta 2005, 67, 112. https://doi.org/10.1016/j.talanta.2005.02.015
  44. Rahman, G. M. M.; Kingston, H. M. S.; Towns, T. G.; Vitale, R. J.; Clay, K. R. Anal. Bioanal. Chem. 2005, 382, 1111. https://doi.org/10.1007/s00216-005-3203-7
  45. El-Shahawi, M. S.; Hassan, S. S. M.; Othman, A. M.; Zyada, M. A.; El-Sonbati, M. A. Anal. Chim. Acta 2005, 534, 319. https://doi.org/10.1016/j.aca.2004.11.085

Cited by

  1. Salt-assisted liquid-liquid microextraction of Cr(VI) ion using an ionic liquid for preconcentration prior to its determination by flame atomic absorption spectrometry vol.176, pp.1-2, 2012, https://doi.org/10.1007/s00604-011-0711-3
  2. Atomic spectrometry update. Elemental speciation vol.27, pp.8, 2012, https://doi.org/10.1039/c2ja90037h
  3. Chromium Speciation Using Flow-injection Preconcentration on Xylenol Orange Functionalized Amberlite XAD-16 and Determination in Industrial Water Samples by Flame Atomic Absorption Spectrometry vol.31, pp.12, 2015, https://doi.org/10.2116/analsci.31.1303
  4. On-line speciation of chromium using a modified chelating resin and determination in industrial water samples by flame atomic absorption spectrometry vol.40, pp.2, 2016, https://doi.org/10.1039/C5NJ02283E
  5. Modified carbon nanotubes in online speciation of chromium in real water samples using hyphenated FI-FAAS vol.41, pp.12, 2017, https://doi.org/10.1039/C7NJ01253E
  6. On-line solid phase extraction method based on flow injection-FAAS using 1,10-phenanthroline modified chelating resin for chromium speciation in industrial water samples vol.6, pp.13, 2016, https://doi.org/10.1039/c6ra01286h
  7. Determination of Hexavalent Chromium (Cr(VI)) Concentrations via Ion Chromatography and UV-Vis Spectrophotometry in Samples Collected from Nacogdoches Wastewater Treatment Plant, East Texas (USA) vol.2016, pp.None, 2010, https://doi.org/10.1155/2016/3468635