DOI QR코드

DOI QR Code

p-Type Doping of Epitaxial Graphene by p-tert-Butylcalix[4]arene

  • Park, Sun-Min (Department of Chemistry, Sookmyung Women's University) ;
  • Yang, Se-Na (Department of Chemistry, Sookmyung Women's University) ;
  • Kim, Ki-Jeong (Pohang Accelerator Laboratory, POSTECH) ;
  • No, Kwang-Hyun (Department of Chemistry, Sookmyung Women's University) ;
  • Lee, Hang-Il (Department of Chemistry, Sookmyung Women's University)
  • Received : 2010.07.26
  • Accepted : 2010.08.15
  • Published : 2010.10.20

Abstract

The Chemical Doping of epitaxial graphene (EG) due to p-tert-butylcalix[4]arene was investigated using high resolution photoemission spectroscopy (HRPES). The measured work function changes verified that increased adsorption of the p-tert-butylcalix[4]arene on EG showed p-type doping characteristics due to charge transfer from the graphene to the p-tert-butylcalix[4]arene through the hydroxyl group. A single oxygen bonding feature associated with the O 1s peak was clearly observed in the core-level spectra, indicating the presence of one equivalent adsorption state.

Keywords

References

  1. Geim, A.; Novoselov, K. Nature Mater. 2007, 6, 183. https://doi.org/10.1038/nmat1849
  2. Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg. E. Science 2006, 313, 951. https://doi.org/10.1126/science.1130681
  3. Gierz, I.; Riedl, C.; Starke, U.; Ast, C. R.; Kern, K. Nano. Lett. 2008, 8, 4603. https://doi.org/10.1021/nl802996s
  4. Bekyarova, E.; Itkis, M. E.; Ramesh, P.; Berger, C.; Sprinkle, M.; de Heer, W. A.; Haddon, R. C. J. Am. Chem. Soc. 2009, 131, 1336. https://doi.org/10.1021/ja8057327
  5. Zhou, S. Y.; Siegel, D. A.; Fedorov, A. V.; Lanzara, A. Phys. Rev. Lett. 2008, 101, 086402. https://doi.org/10.1103/PhysRevLett.101.086402
  6. Chen, W.; Chen, S.; Qi, D. C.; Gao, X. Y.; Wee, A. T. S. J. Am. Chem. Soc. 2007, 129, 10418. https://doi.org/10.1021/ja071658g
  7. Liu, L. H.; Yan, M. Nano Lett. 2009, 9, 3375. https://doi.org/10.1021/nl901669h
  8. Delamar, M.; Hitmi, R.; Pinson, J. ; Saveant, J. M. J. Am. Chem. Soc. 1992, 114, 5883. https://doi.org/10.1021/ja00040a074
  9. Duplock, E. J.; Scheffler, M.; Lindan, P. J. D. Phys. Rev. Lett. 2004, 92, 225502. https://doi.org/10.1103/PhysRevLett.92.225502
  10. Chernozatonski, L.; Sorokin, P.; Belova, E.; Bruning, J.; Fedorov, A. JETP Lett. 2007, 85, 77. https://doi.org/10.1134/S002136400701016X
  11. Pedersen, T. G.; Flindt, C.; Pedersen, J.; Mortensen, N. A.; Jauho, A.-P.; Pedersen, K. Phys. Rev. Lett. 2008, 100, 136804. https://doi.org/10.1103/PhysRevLett.100.136804
  12. Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Kelly, P. J.; van den Brink, J. Phys. Rev. B 2007, 76, 073103. https://doi.org/10.1103/PhysRevB.76.073103
  13. Son, Y.; Cohen, M.; Louie, S. Phys. Rev. Lett. 2006, 97, 1.
  14. Zhou, S. Y.; Siegel, D. A.; Fedorov, A. V.; El Gabaly, F.; Schmid, A. K.; Castro Neto, A. H.; Lee, D.-H.; Lanzara, A. Nature Mater. 2008, 7, 259. https://doi.org/10.1038/nmat2154b
  15. Rotenberg, E.; Bostwick, A.; Ohta, T.; McChesney, J. L.; Seyller, T.; Horn, K. Nature Mater. 2008, 7, 258.
  16. Krasheninnikov, A. V.; Banhart, F. Nature Mater. 2007, 6, 723. https://doi.org/10.1038/nmat1996
  17. Gutsche, C. D.; Iqbal, M. Organic Syntheses 1993, 8, 75.
  18. Schreier, F. J. Quant. Spectrosc. Radiat. Transfer. 1992, 48, 743. https://doi.org/10.1016/0022-4073(92)90139-U
  19. Kim, K.-j; Lee, H.; Choi, J.; Lee, H.-K.; Kang, T.-H.; Kim, B.; Kim, S. J. Phys.: Condens. Matter 2008, 20, 225017. https://doi.org/10.1088/0953-8984/20/22/225017
  20. Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006, 106, 1105-1136. https://doi.org/10.1021/cr050569o
  21. Holzinger, M.; Abraham, J.; Whelan, P.; Graupner, R.; Ley, L.; Hennrich, F.; Kappes, M.; Hirsch, A. J. Am. Chem. Soc. 2003, 125, 8566. https://doi.org/10.1021/ja029931w
  22. Johansson, L. I.; Owman, F.; Martensson, P. Phys. Rev. B 1996, 53, 13793. https://doi.org/10.1103/PhysRevB.53.13793
  23. Johansson, L. I.; Owman, F.; Martensson, P.; Persson, C.; Lindefelt, U. Phys. Rev. B 1996, 53, 13803. https://doi.org/10.1103/PhysRevB.53.13803
  24. Emtsev, K. V.; Speck, F.; Seyller, Th.; Ley, L.; Riley, J. D. Phys. Rev. B 2008, 77, 155303 https://doi.org/10.1103/PhysRevB.77.155303
  25. Cahen, D.; Kahn, A. Adv. Mater. 2003, 15, 271. https://doi.org/10.1002/adma.200390065
  26. Alloway, D. M.; Hofmann, M.; Smith, D. L.; Gruhn, N. E.; Graham, A. L.; Colorado, R., Jr.; Wysocki, V. H.; Lee, T. R.; Lee, P. A.; Armstrong, N. R. J. Phys. Chem. B 2003, 107, 11690. https://doi.org/10.1021/jp034665+
  27. Koch, N.; Duhm, S.; Rabe, J. P.; Vollmer, A.; Johnson, R. L. Phys. Rev. Lett. 2005, 95, 237601. https://doi.org/10.1103/PhysRevLett.95.237601
  28. Koch, N.; Duhm, S.; Rabe, J. P.; Rentenberger, S.; Johnson, R. L.; Klankermayer, J.; Schreiber, F. Appl. Phys. Lett. 2005, 87, 101905. https://doi.org/10.1063/1.2041838
  29. Ishii, H.; Sugiyama, K.; Ito, E.; Seki, K. Adv. Mater. 1999, 11, 605. https://doi.org/10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q
  30. Balog, R.; Jørgensen, B.; Nilsson, L.; Andersen, M.; Rienks, E.; Bianchi, M.; Fanetti, M.; Lægsgaard, E.; Baraldi, A.; Lizzit, S.; Sljivancanin, Z.; Besenbacher, F.; Hammer, B.; Pedersen, T. G.; Hofmann, P.; Hornekær, L. Nature Materials 2010, 9, 315. https://doi.org/10.1038/nmat2710

Cited by

  1. Evidence of Chemical Functionalized Molecules Adsorbed on the Interface Region of Epitaxial Graphene: Interface Roughness and Modification of the Electronic Properties vol.115, pp.38, 2011, https://doi.org/10.1021/jp205840v
  2. Chemical Doping of Graphene by Altretamine(2,4,6-Tris [dimethylamino]-1,3,5-Triazine) vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2199
  3. Atmospheric pressure route to epitaxial nitrogen-doped trilayer graphene on 4H-SiC (0001) substrate vol.105, pp.23, 2014, https://doi.org/10.1063/1.4903866
  4. Tuning the work function of monolayer graphene on 4H-SiC (0001) with nitric acid vol.26, pp.44, 2010, https://doi.org/10.1088/0957-4484/26/44/445702