DOI QR코드

DOI QR Code

Computational Study of 3-Aminophenol·(CO2)1 Cluster: CO2 Capture Ability of 3-Aminophenol

  • Sohn, Woon-Yong (Division of Energy Systems Research, Ajou University) ;
  • Kim, Min-Ho (Division of Energy Systems Research, Ajou University) ;
  • Kim, Sang-Su (Department of Chemistry, Ajou University) ;
  • Kang, Hyuk (Department of Chemistry, Ajou University)
  • Received : 2010.05.10
  • Accepted : 2010.08.12
  • Published : 2010.10.20

Abstract

The structure of 3-aminophenol $(CO_2)_1$ cluster was computationally studied both in the ground and the lowest singlet excited electronic states. The ground state structure and binding energy of the cluster was investigated using the second-order M$\ddoot{o}$ller-Plesset perturbation theory (MP2) at the complete basis set (CBS) limit. The excited state geometry of the cluster was obtained at the second-order approximate coupled cluster (CC2) level with cc-pVDZ basis set, and the $S_0-S_1$ absorption spectrum was simulated by calculating Franck-Condon overlap integral. The ground state geometry of the global minimum with a very high binding energy of 4.3 kcal/mol was found for the cluster, due to the interaction between amino group and $CO_2$ in addition to the strong $\pi-\pi$ interaction between the aromatic ring and $CO_2$. The excited state geometry shows a very big shift in the position of $CO_2$ compared to the ground state geometry, which results in low intensity and broad envelope in the Franck-Condon simulation.

Keywords

References

  1. Jou, F.-Y.; Mather, A. E.; Otto, F. D. Can. J. Chem. Eng. 1995, 73, 140.
  2. Iida, K.; Yokogawa, D.; Ikeda, A.; Sato, H.; Sakaki, S. Phys. Chem. Chem. Phys. 2009, 11, 8556. https://doi.org/10.1039/b906912g
  3. Nelson, M. R.; Borkman, R. F. J. Phys. Chem. 1998, 102, 7860. https://doi.org/10.1021/jp981824u
  4. Ferreira Coelho, L. A.; Marchut, A.; de Oliveira, J. V.; Balbuena, P. B. Ind. Eng. Chem. Res. 2000, 39, 227. https://doi.org/10.1021/ie990266i
  5. Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. https://doi.org/10.1103/PhysRev.46.618
  6. Wilson, A.; Dunning, T. H., Jr. J. Chem. Phys. 1997, 106, 8718. https://doi.org/10.1063/1.473932
  7. Helgaker, T.; Klopper, W.; Koch, H.; Noga, J. J. Chem. Phys. 1997, 106, 9639. https://doi.org/10.1063/1.473863
  8. Buyukmurat, Y.; Akyuz, S. J. Mol. Struct. 2005, 744, 921. https://doi.org/10.1016/j.molstruc.2004.10.100
  9. Hwang, R.; Park, Y. C.; Lee, J. S. Theor. Chem. Acc. 2006, 155, 54.
  10. Huh, S. B.; Lee, J. S. J. Chem. Phys. 2003, 188, 7.
  11. Frisch, M. J. et al., Gaussian 03, Wallingford CT, 2004.
  12. Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. https://doi.org/10.1080/00268977000101561
  13. Christiansen, O.; Koch, H.; Jorgensen, P. Chem. Phys. Lett. 1995, 243, 409. https://doi.org/10.1016/0009-2614(95)00841-Q
  14. Hattig, C.; Weigend, F. J. Chem. Phys. 2000, 113, 5154. https://doi.org/10.1063/1.1290013
  15. Kohn, A.; Hättig, C. J. Chem. Phys. 2003, 119, 5021. https://doi.org/10.1063/1.1597635
  16. Kim, K. H.; Kim, Y. Bull. Korean Chem. Soc. 2007, 28, 12.
  17. Daza, M. C.; Dobado, J. A.; Molina, J. M.; Salvador, P.; Duran, M.; Villaveces, J. L. J. Chem. Phys. 1999, 110, 24.
  18. Ahlrichs, R.; Bar, M.; Haser, M.; Horn, H.; Kolmel, C. Chem. Phys. Lett. 1989, 162, 165. https://doi.org/10.1016/0009-2614(89)85118-8
  19. Borrelli, R.; Peluso, A. J. Chem. Phys. 2003, 119, 8437. https://doi.org/10.1063/1.1609979
  20. Peluso, A.; Santoro, F.; Del Re, G. Int. J. Quantum Chem. 1997, 63, 233. https://doi.org/10.1002/(SICI)1097-461X(1997)63:1<233::AID-QUA25>3.0.CO;2-B