DOI QR코드

DOI QR Code

Single Electron Transfer (SET) Pathway: Nucleophilic Substitution Reaction of 4-Chloro-7-nitrobenzofurazan with Anilines in MeOH-MeCN Mixtures

  • Choi, Ho-June (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Yang, Ki-Yull (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Sang-Gyeong (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Jong-Pal (Department of Chemistry, Dong-A University) ;
  • Koo, In-Sun (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University)
  • 투고 : 2010.08.19
  • 심사 : 2010.08.28
  • 발행 : 2010.10.20

초록

A nucleophilic substitution reaction of 4-chloro-7-nitrobenzofurazan (NBF-Cl) with anilines in MeOH-MeCN mixtures was conducted at 25, 35, and $45^{\circ}C$. Based on the higher $\beta_{nuc}$ values (1.0 - 1.6) of the reaction and a good correlation of the rate constants with the reduction potentials of the aniline nucleophiles, the present reaction was initiated by a single electron transfer (SET). After this step, the reaction proceeds through a transition state similar to the normal $S_NAr$-Ad.E pathway.

키워드

참고문헌

  1. Wu, Z.; Glaser, R. J. Am. Chem. Soc. 2004, 126, 10632. https://doi.org/10.1021/ja047620a
  2. Miller, J. Aromatic Nucleophilic Substitution Reaction; Elsevier: London, 1968.
  3. Ross, S. D. Prog. Phys. Org. Chem. 1963, 1, 31. https://doi.org/10.1002/9780470171806.ch2
  4. Bordwell, F. G.; Branca, J. C.; Cripe, T. A. Isr. J. Chem. 1985, 26, 357. https://doi.org/10.1002/ijch.198500120
  5. Bordwell, F. G.; Clemens, A. H. J. Org. Chem. 1981, 46, 1037. https://doi.org/10.1021/jo00318a044
  6. Bordwell, F. G.; Hugues, D. L. J. Am. Chem. Soc. 1986, 108, 5991. https://doi.org/10.1021/ja00279a054
  7. Terrier, F. Aromatic Nucleophilic Substitution Reaction; VCH publisher: New York, 1991, Chapers 1 and 2.
  8. Bernasconi, C. F. MTP Int. Rev. Sci. Org. Chem. Ser. 1 1973, 3, 33.
  9. Jenks, W. P. In Nucleophilicity; Harris, J. M., Mc Manus, S. P., Eds.; Advances in Chemistry Series 215, American Chemical Society: Washington, DC, 1987; p 155.
  10. Terrier, F.; Mokhtari, M.; Goumony, R.; Hallé, J.-C.; Buncel, E. Org. Biomol. Chem. 2003, 1, 1757. https://doi.org/10.1039/b301031g
  11. Lee, I. Chem. Soc. Rev. 1990, 19, 317. https://doi.org/10.1039/cs9901900317
  12. Lee, I. Adv. Phy. Org. Chem. 1992, 27, 57.
  13. Williams, A. Chem. Soc. Rev. 1994, 93.
  14. Page, A.; Williams, A. In Organic and Bio-organic Mechanisms; Longman: Harlow, Chapter 3.
  15. Kresge, A. J. Chem. Soc. Rev. 1973, 2, 475. https://doi.org/10.1039/cs9730200475
  16. Bordwell, F. G.; Hughes, D. L. J. Am. Chem. Soc. 1986, 108, 5991. https://doi.org/10.1021/ja00279a054
  17. Moutiers, G.; Guével, E. L.; Cannes, C.; Terrier, F.; Buncel, E. Eur. J. Org. Chem. 2001, 3279.
  18. Sung, R. Y.; Choi, H.; Lee, J. P.; Park, J. K.; Yang, K.; Koo, I. S. Bull. Korean Chem. Soc. 2009, 30, 1579. https://doi.org/10.5012/bkcs.2009.30.7.1579
  19. Bordwell, F. G.; Boyle, W. J. J. Am. Chem. Soc. 1972, 94, 3907. https://doi.org/10.1021/ja00766a041
  20. Bordwell, F. G.; Hautala, J. A. J. Org. Chem. 1978, 43, 3116. https://doi.org/10.1021/jo00410a005
  21. Jenks, W. P.; Haber, M. T.; Herschlag, D.; Nazaretian, K. L. J. Am. Chem. Soc. 1986, 108, 479. https://doi.org/10.1021/ja00263a019
  22. Bernasconi, C. F. Adv. Phy. Org. Chem. 1992, 27, 119.
  23. Lee, H. W.; Lee, I. J. Korean Chem. Soc. 1978, 22, 221.
  24. Koniglio, B. O. et al. J. Chem. Soc. 1966, 152.
  25. Parker, A. J. J. Chem. Soc.1961, 4398. https://doi.org/10.1039/jr9610004398
  26. Kingsbury, C. A. J. Org. Chem. 1964, 29, 3262. https://doi.org/10.1021/jo01034a032
  27. Ballestreri, F. P. et al. J. Org. Chem. 1977, 42, 1415. https://doi.org/10.1021/jo00428a032
  28. Banjoko, O.; Babatunde, I. A. Tetrahedron 2004, 60, 4645. https://doi.org/10.1016/j.tet.2004.03.079
  29. Mancini, P. M.; Fortunato, G. G.; Votlero, L. R. J. Phys. Org. Chem. 2004, 17, 138. https://doi.org/10.1002/poc.704
  30. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem.1998, 63, 9834. https://doi.org/10.1021/jo9814905
  31. Kang, D. H.; Koo, I. S.; Lee, J. G.; Lee, I. J. Korean Chem. Soc. 1985, 29, 565.
  32. Koo, I. S. et al. Unpublished results.
  33. Hwang, J.; Yang, K.; Koo, I. S.; Sung, D. S.; Lee, I. Bull. Korean Chem. Soc. 2006, 27, 733. https://doi.org/10.5012/bkcs.2006.27.5.733
  34. Ritchie, C. D. In Solute-Solvent Interactions; Coetzee, J. F., Ritchie, C. D., Eds.; Marcel Dekker: New York, 1969; Chapter 4.
  35. Coetzee, J. F. Progress in Physical Organic Chemistry; Streitwieser, A., Jr., Taft, R. W., Eds.; Wiley; New York, 1967; Vol. 4, pp 54-92.
  36. Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1996, 2099.
  37. Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y. B. J. Phys. Chem. B 1999, 103, 7302. https://doi.org/10.1021/jp991115w
  38. Ryan, J. J.; Humffray, A. A. J. Chem. Soc. B 1967, 1300. https://doi.org/10.1039/j29670001300
  39. Sung, R. Y.; Choi, H.; Lee, J. P.; Park, J. K.; Koo, I. S. Bull. Korean Chem. Soc. 2009, 30, 1579. https://doi.org/10.5012/bkcs.2009.30.7.1579
  40. Shin, G.-C.; Hwang, J.; Yang, K.; Koo, I. S.; Lee, I. Bull. Korean Chem. Soc. 2005, 26, 1981. https://doi.org/10.5012/bkcs.2005.26.12.1981
  41. Bernasconi, C. F.; Stronach, M. W. J. Am. Chem. Soc. 1993, 115, 1341. https://doi.org/10.1021/ja00057a017
  42. Jonsson, M.; Lind, J.; Ericksen, T. E.; Merényi, G. J. Am. Chem. Soc. 1994, 116, 1423. https://doi.org/10.1021/ja00083a030
  43. Bacon, J.; Adams, R. N. J. Am. Chem. Soc. 1968, 90, 6596. https://doi.org/10.1021/ja01026a005

피인용 문헌

  1. Electronic and solvent effects on kinetics of SNAr substitution reactions of substituted anilines with 2,6-bis(trifluoromethanesulfonyl)-4-nitroanisole in MeOH–Me2SO mixtures of varying composition: one reaction with two mechanistic pathways vol.144, pp.10, 2013, https://doi.org/10.1007/s00706-013-1030-7