DOI QR코드

DOI QR Code

Biogenic Nano-Synthesis; towards the Efficient Production of the Biocompatible Gold Nanoparticles

  • Ghodake, Gajanan (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Eom, Chi-Yong (Environment and Metabolomics Research Team, Seoul Center, Korea Basic Science Institute) ;
  • Kim, Si-Wouk (Department of Environmental Engineering, Chosun University) ;
  • Jin, Eon-Seon (Department of Life Science, College of Natural Sciences, Hanyang University)
  • Received : 2010.04.22
  • Accepted : 2010.08.16
  • Published : 2010.10.20

Abstract

We present a rapid biogenic method for the production of nanoscale gold particles using pear extract. The formation and stability of pear-derived gold nanoparticles (Pear-AuNPs) were monitored by ultraviolet-visible spectroscopy. Their morphology, elemental composition and crystalline phase were determined by transmission electron microscopy, energy-dispersive X-ray spectroscopy and selected area electron diffraction. The average core size of crystalline Pear-AuNPs was in the range of $10{\pm}5\;nm$ and the observed morphology was spherical. The X-ray photoelectron spectrum showed a strong peak for the pure 'Au' phase. The circular dichroism spectrum indicated the natural capping ability of the pear extract, which generated peptide-gold nanoparticles. These nanoparticles were stable in aqueous solution for two months. A cell viability assay of Pear-AuNPs showed biocompatibility with human embryonic kidney 293 cells. Accordingly, this eco-friendly process for the bio-mimetic production of Pear-AuNPs is nontoxic in nature; consequently, it will find potential application in nano-biotechnology.

Keywords

References

  1. Gole, A.; Murphy, C. J. Chem. Mater. 2004, 16, 3633-3640. https://doi.org/10.1021/cm0492336
  2. Meltzer, S.; Resch, R.; Koel, B. E.; Thompson, M. E.; Madhukar, A.; Requicha, A.; Will, P. Langmuir 2001, 17, 1713-1718. https://doi.org/10.1021/la001170s
  3. Hutchison, J. E. ACS Nano 2008, 2, 395-402. https://doi.org/10.1021/nn800131j
  4. Albrecht, M. A.; Evans, C. W.; Raston, C. L. Green Chem. 2006, 8, 417-432. https://doi.org/10.1039/b517131h
  5. El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257-264. https://doi.org/10.1021/ar960016n
  6. Huang, X. H.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Nanomedicine2006, 2, 681-693. https://doi.org/10.2217/17435889.2.5.681
  7. Kumar, V.; Yadav, S. K. J. Chem. Technol. Biotechnol. 2009, 84, 151-157 https://doi.org/10.1002/jctb.2023
  8. Sastry, M.; Ahmad, A.; Khan, M. I.; Kumar, R. In Microbial Nanoparticle Production; Niemeyer, C. M., Mirkin, C. A., Eds.; Wiley-VCH: Weinheim, Germany, 2004; pp 126-135.
  9. Bhattacharya, D.; Gupta, R. Crit. Rev. Biotechno. 2005, 25, 199-204. https://doi.org/10.1080/07388550500361994
  10. Mohanpuria, P.; Rana, N. K.; Yadav, S. K. J. Nanopart. Res. 2008, 10, 507-517. https://doi.org/10.1007/s11051-007-9275-x
  11. U.S. Department of Agriculture, Agricultural Research Service. USDA National Nutrient Database for Standard Reference, Release 21. Available from: http://www.nal.usda.gov/fnic/foodcomp/search. (2008).
  12. Chen, J.; Wang, Z.; Wub, J.; Wang, Q.; Hu, X. Food Chem. 2007, 104, 268-275. https://doi.org/10.1016/j.foodchem.2006.11.038
  13. Mulvaney, P. Langmuir 1996, 12, 788-800. https://doi.org/10.1021/la9502711
  14. Ghodake, G. S.; Deshpande, N. G.; Lee Y. P.; Jin, E. S. Colloids Surf. B. 2010, 75, 584-589.
  15. Ogale, S. B.; Ahmad, A.; Pasricha, R.; Dhas, V. V.; Syed, A. Appl. Phys. Lett. 2006, 89, 263105-263108. https://doi.org/10.1063/1.2424272
  16. Shukla, R.; Nune, S. K.; Chanda, N.; Katti, K.; Mekapothula, S.; Kulkarni, R. R.; Welshons, W. V.; Kannan, R.; Katti, K. V. Small 2008, 4, 1425-1436. https://doi.org/10.1002/smll.200800525
  17. Nune, S. K.; Chanda, N.; Shukla, R.; Katti, K.; Kulkarni, R. R.; Thilakavathy,S.; Mekapothula, S.; Kannan, R.; Katti, K. V. J. Mater. Chem. 2009, 19, 2912-2920. https://doi.org/10.1039/b822015h
  18. Song, J. Y.; Jang, H. K.; Kim, B. S. Process Biochem. 2009, 44, 1133-1138. https://doi.org/10.1016/j.procbio.2009.06.005
  19. Poliakoff, M.; Licence, P. Nature 2007, 450, 810-812. https://doi.org/10.1038/450810a
  20. Tang, S.; Bourne, R.; Smith. R.; Poliakoff, M. Green Chem. 2008, 10, 268-269. https://doi.org/10.1039/b719469m
  21. Shankar, S. S.; Rai, A.; Ahmad, A.; Sastry, M. Chem. Mater. 2005, 17, 566-572. https://doi.org/10.1021/cm048292g
  22. Joerger, R.; Klaus, T.; Granqvist, C. G. Adv. Mater. 2000, 12, 407-409. https://doi.org/10.1002/(SICI)1521-4095(200003)12:6<407::AID-ADMA407>3.0.CO;2-O
  23. Klaus, T.; Joerger, R.; Olsson, E.; Granqvist, C. G. Trends Biotechnol. 2001, 19, 15-20. https://doi.org/10.1016/S0167-7799(00)01514-6
  24. Nair, B.; Pradeep, T. Cryst. Gro. Des. 2002, 4, 295-298.
  25. Ahmad, A.; Senapati, S.; Khan, M.; Kumar, R.; Ramani, R.; Srinivas, V.; Sastry, M. Nanotechnology 2003, 14, 824-828. https://doi.org/10.1088/0957-4484/14/7/323
  26. Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Shankar, S. R.; Khan, M. I.; Parishcha, R.; Ajay, P. V.; Alam, M.; Kumar, R.; Sastry, M. Nano Lett. 2001, 1, 515-519. https://doi.org/10.1021/nl0155274
  27. Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X.; Wang, H.; Wang, Y.; Shao, W.; He, N.; Hong, J.; Chen, C. Nanotechnology 2007, 18, 105104-105114. https://doi.org/10.1088/0957-4484/18/10/105104
  28. Ankamwar, B.; Damle, C.; Absar, A.; Muraly S. J. Nanosci. Nanotechnol. 2005, 10, 1665-1671.
  29. Jain, K. K. Clinical Chem. 2007, 53, 2002-2009. https://doi.org/10.1373/clinchem.2007.090795
  30. Bulushev, D. A.; Yuranov, I.; Suvorova, E. I.; Buffat, P. A.; Kiwi-Minsker, L. J. Cat. 2004, 224, 8-17. https://doi.org/10.1016/j.jcat.2004.02.014
  31. Santra, S.; Dutta, D.; Walter, G. A.; Moudgil, B. M. Technol. Cancer Res. Treat. 2005, 4, 593-602. https://doi.org/10.1177/153303460500400603
  32. Zhang, G.; Keita, B.; Dolbecq, A.; Mialane, P.; Secheresse, F.; Miserque, F.; Nadjo, L. Chem. Mater. 2007, 19, 5821-5823. https://doi.org/10.1021/cm7020142
  33. Gill, S.; Lobenberg, R.; Ku, T.; Azarmi, S.; Roa, W.; Prenner, E. J. J. Biomed. Nanotechnol. 2007, 3, 107-119. https://doi.org/10.1166/jbn.2007.015
  34. Jin, Y. H.; Kannan, S.; Wu, M.; Zhao, J. X. Chem. Res. Toxicol. 2007, 20, 1126-1133. https://doi.org/10.1021/tx7001959
  35. Dahl, J. A.; Maddux, B. L.; Hutchison, J. E. Chem. Rev. 2007, 107, 2228-2269. https://doi.org/10.1021/cr050943k
  36. Lewinski, N.; Colvin, V.; Drezek, R. Small 2008, 4, 26-49. https://doi.org/10.1002/smll.200700595

Cited by

  1. Biogenic materialization using pear extract intended for the synthesis and design of ordered gold nanostructures vol.46, pp.14, 2011, https://doi.org/10.1007/s10853-011-5384-0
  2. In-vitro free radical scavenging activity of biosynthesized gold and silver nanoparticles using Prunus armeniaca (apricot) fruit extract vol.15, pp.1, 2013, https://doi.org/10.1007/s11051-012-1366-7
  3. Plant mediated green synthesis: modified approaches vol.5, pp.21, 2013, https://doi.org/10.1039/c3nr02548a
  4. Environmentally Friendly Preparation of Gold and Silver Nanoparticles for Sers Applications Using Biopolymer Pectin vol.81, pp.6, 2015, https://doi.org/10.1007/s10812-015-0036-9
  5. Study on Green Synthesis of Gold Nanoparticles and Their Potential Applications as Catalysts vol.27, pp.4, 2016, https://doi.org/10.1007/s10876-016-1001-3
  6. Biogenic synthesis of metal nanocatalysts using Mimosa pudica leaves for efficient reduction of aromatic nitrocompounds vol.4, pp.71, 2010, https://doi.org/10.1039/c4ra04233f
  7. Cerium nanoparticles synthesized using aqueous extract of Centella asiatica: characterization, determination of free radical scavenging activity and evaluation of efficacy against cardiomyoblast hyper vol.5, pp.27, 2010, https://doi.org/10.1039/c4ra16893c
  8. Biomolecular assisted synthesis and mechanism of silver and gold nanoparticles vol.6, pp.8, 2010, https://doi.org/10.1088/2053-1591/ab296b
  9. The antimicrobial activity of biogenic silver nanoparticles synthesized from extracts of Red and Green European pear cultivars vol.49, pp.1, 2010, https://doi.org/10.1080/21691401.2021.1980884
  10. Forced Biomineralization: A Review vol.6, pp.3, 2010, https://doi.org/10.3390/biomimetics6030046