DOI QR코드

DOI QR Code

A Simpler Method to Estimate the Elastic Constant of Collagen-like Microfibril Using Voigt-Reuss Bounds

복합재료역학을 이용한 콜라겐 단백질 마이크로피브릴의 탄성율 예측 개선

  • Received : 2009.08.19
  • Accepted : 2010.05.12
  • Published : 2010.06.30

Abstract

The effective Young’s modulus of a microfibril surrounded by water may be simply calculated by using the upper (Voigt) and lower (Reuss) bounds, which is one way to estimate the Young’s modulus in composite materials. The Steered Molecular Dynamics (SMD) has been used for estimating the Young’s modulus of a microfibril surrounded by water. In this paper, the result estimated by the upper (Voigt) and lower (Reuss) bounds shows 9.2% to 21.8% discrepancy from the result estimated by SMD, but introducing “efficiency of reinforcement parameter” removes the discrepancy and shows good agreement with the result estimated by SMD. We found the best fit for the Young’s modulus against the size of the gap between microfibrils. Also the steps using these bounds are much simpler than SMD.

Keywords

References

  1. Y.J. Yoon, and S.C. Cowin, "The estimated elastic constants for a single bone osteonal lamella." Biomechan Model Mechanobiol., vol. 7, no. 1, pp. 1-11, 2008. https://doi.org/10.1007/s10237-006-0072-8
  2. D. Zhang, U. Chippada, and K. Jordan K, "Effect of the structural water on the mechanical properties of collagen-like microfibrils: A molecular dynamics study." Annals of Biomedical Engineering, vol. 35, no. 7, pp. 1216-1230, 2007. https://doi.org/10.1007/s10439-007-9296-8
  3. S.C. Cowin, "Bone poroelasticity." J. Biomech., vol. 32, pp. 217-238, 1999. https://doi.org/10.1016/S0021-9290(98)00161-4
  4. H.J.C. Berendsen, (1962), "Nuclear magnetic resonace study of collagen hydration." J. Chem. Phys, vol. 36, no. 2, pp.3297-3305, 1962. https://doi.org/10.1063/1.1732460
  5. M.P.E. Wenger, L. Bozec, M.A Horton, and P. Mesquida, "Mechanical properties of collagen fibrils." Biophys J., vol. 93, no. 4, pp. 1255-1263, 2007. https://doi.org/10.1529/biophysj.106.103192
  6. U. Akiva, E. Itzhak, and H.D. Wagner, "Elastic constants of three-dimensional orthotropic composites with platelet/ribbon reinforcement." Composite Science and Technology., vol. 57, pp. 173-184, 1997. https://doi.org/10.1016/S0266-3538(96)00123-6
  7. J.M. Crolet, B Aoubiza, and A Meunier, "Compact bone: numerical simulation of mechanical characteristics." J. Biomechanics, vol. 26, pp. 677-687, 1993. https://doi.org/10.1016/0021-9290(93)90031-9
  8. C. Hellmich, and F.J. Ulm, "Micromechanical model for ultrastructural stiffness of mineralized tissues." Journal of Engineering Mechanics., vol. 128, pp. 898-908, 2002. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:8(898)
  9. J.H. Kinney, M. Balooch, G.W. Marshall, and S.J. Marshall, "A micromechanics model of the elastic properties of human dentine." Archives of Oral Biology, vol. 44, pp. 813-822, 1999. https://doi.org/10.1016/S0003-9969(99)00080-1
  10. Q.H. Qin, and M.V. Swain, "A micro-mechanics of dentin mechanical properties." Biomaterials, vol. 25, pp. 5081-5090, 2004. https://doi.org/10.1016/j.biomaterials.2003.12.042
  11. J.L. Katz, "Hard tissue as a composite material -I. Bounds on elastic behavior." J. Biomech, vol. 4, pp. 455-473, 1971. https://doi.org/10.1016/0021-9290(71)90064-9
  12. A. Reuss, "Berechnung der File? grenze von Mischkristallen auf Grund der Plastizit?tsbedingung fur Einkristalle." Z. Angew Math Mech, no. 9, pp. 49-58, 1929.
  13. W. Voigt, Lehrbuch der Kristallphysik, Leipzig, 1910.
  14. Y.J. Yoon, S.C. Cowin SC, "The elastic moduli estimation of the solid-water mixture." International Journal of Solids and Structures, vol. 46, pp. 527-533, 2009. https://doi.org/10.1016/j.ijsolstr.2008.09.010
  15. C.B. Anderson, "Mechanics of fluids." In Marks Saturated Handbook for Mechanical Engineers (Baumeister, T., ed.), McGraw-Hill, pp.3.48-3.76, 1967.
  16. R. Harley, D. James, A. Miller, J.W. White, "Phonons and the elastic moduli of collagen and muscle." Nature, vol. 267, pp. 285-287, 1997.
  17. S. Cusack, and A. Miller, "Determination of the elastic constants of collagen by Brilliouin light scattering." J. Mol. Biol., vol. 135, pp. 39-51, 1979. https://doi.org/10.1016/0022-2836(79)90339-5
  18. N. Sasaki, and S. Odajima, "Stress-strain curve and Young's modulus of a collagen molecule as determined by the X-ray diffraction technique." J. Biomech., vol. 29, pp. 655-658, 1996. https://doi.org/10.1016/0021-9290(95)00110-7
  19. S. Vesentini, C.F.C. Fitie, F.M. Montevecchi, and A. Redaelli, "Molecular assessment of the elastic properties of collagen-like homotrimer sequenees." Biomechan. Model. Mechanobiol., vol. 3, pp. 224-234, 2005. https://doi.org/10.1007/s10237-004-0064-5
  20. D.K. Dubey, and V. Tomar, "Role of hydroxyapatite crystal shape in nanoscale mechanical behavior of model tropocollagen-hydroxyapatite hard biomaterials." Materials Science and Engineering, in press, 2009.