J. Biomed. Eng. Res:177-186, 2010

In vivo Evaluation of Flow Estimation Methods
for 3D Color Doppler Imaging

Yangmo Yoo

Department of Electronic Engineering and Interdisciplinary Program of Integrated Biotechnology
(Received January 13, 2010. Accepted April 26, 2010)

Abstract

In 3D ultrasound color Doppler imaging (CDI), 8-16 pulse transmissions (ensembles) per each scanline are used for effective clutter
rejection and flow estimation, but it yields a low volume acquisition rate. In this paper, we have evaluated three flow estimation methods:
autoregression (AR), eigendecomposition (ED), and autocorrelation combined with adaptive clutter rejection (AC-ACR) for a small
ensemble size (E=4). The performance of AR, ED and AC-ACR methods was compared using 2D and 3D in vivo data acquired under
different clutter conditions (common carotid artery, kidney and liver). To evaluate the effectiveness of three methods, receiver operating
characteristic (ROC) curves were generated. For 2D kidney in vivo data, the AC-ACR method outperforms the AR and ED methods in terms
of the area under the ROC curve (AUC) (0.852 vs. 0.793 and 0.813, respectively). Similarly, the AC-ACR method shows higher AUC values
for 2D liver in vivo data compared to the AR and ED methods (0.855 vs. 0.807 and 0.823, respectively). For the common carotid artery data,
the AR provides higher AUC values, but it suffers from biased estimates. For 3D in vivo data acquired from a kidney transplant patient, the
AC-ACR with E=4 provides an AUC value of 0.799. These in vivo experiment results indicate that the AC-ACR method can provide more
robust flow estimates compared to the AR and ED methods with a small ensemble size.
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| . INTRODUCTION

3D color Doppler imaging (CDI) combines the directional
flow information of 2D CDI and the advantages of 3D
ultrasound[1]. It is useful for noninvasively evaluating
hemodynamic changes with simultaneous visualization of
surrounding tissues, e.g., assessment of mitral regurgitation
[2], fetal congenital heart defects[3] and stroke volume
measurement[4]. Compared to 3D B-mode ultrasound
imaging where a single pulse transmission is needed for each
scanline, 3D CDI has a lower volume acquisition rate because
an ensemble of pulse transmissions (typically 8 to 16) is
required for each scanline to obtain flow information via a
commonly-used autocorrelation (AC) method[5,6]. This
relatively-large ensemble size is necessary to adequately
suppress the strong backscattering from slow-moving tissues
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and stationary echoes (i.e., clutter), which obscures the weak
scattering from blood flow. The low volume acquisition rate
also decreases the temporal resolution of 3D CDI, which could
lead to inaccurate in flow quantification[7,8] and cause flash
artifacts due to patient and/or probe motion.

One approach to improve the volume rate is to decrease the
ensemble size for flow estimation. However, it is challenging
to design an appropriate clutter filter with small ensemble
sizes. For example, since a finite impulse response (FIR) filter
reduces the number of data samples available for flow
estimation, it cannot be used for clutter rejection with small
ensemble sizes (e.g, 4 and 6). On the other hand,
projection-initialized infinite impulse response (PI-IIR) and
polynomial regression (PR) filters do not reduce the number of
data samples for flow estimation, but they may introduce a
bias on flow estimation due to their time-varying impulse
response{9-11]. To improve clutter rejection in AC, several
adaptive clutter suppression techniques, such as eigenvector
filtering and adaptive clutter rejection, have been proposed
[9,12-13]. Eigenvector filtering can theoretically provide the
maximum clutter suppression due to its best mean square
approximation of the clutter. However, it could remove the
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flow signal close to the clutter frequency due to a limitation in
accurately determining the clutter subspace dimension{13].

Alternatively, a flow estimation algorithm that is capable of
directly extracting the flow signals without clutter rejection
can be utilized. Several new flow estimation techniques, such
as autoregression (AR) and eigendecomposition (ED), have
been proposed to separate clutter and flow without applying a
highpass clutter filter[14-19]. From previous studies, the AR
and ED methods adequately suppress clutter, but quantitative
evaluations on the robustness of these two methods using
small ensemble sizes under realistic in vivo conditions for 3D
CDI are still lacking.

In this paper, we quantitatively evaluate the sensitivity and
specificity of three estimation methods (i.e., AR, ED and AC)
under different chutter conditions using 2D and 3D in vivo data
acquired using a commercial ultrasound machine. To separate
flow signals from noise, the local statistics (i.e., standard
deviation) of flow estimates and the ratio of singular values
were used for the AR and ED estimators, respectively. For the
AC method, the adaptive clutter filtering where an optimum
filter is selected based on measured clutter characteristics was
used.

[I. METHODS

In this section, we introduce three flow estimation methods,
ie., AC-ACR, AR and ED. Also, the experimental setup,
including evaluation metric, is presented.

A. Flow estimation methods

For each temporal sample, the backscattered quadrature-
demodulated signal from the ¢ successive transmitted
ultrasound pulse can be expressed by[9]

yle) = cle)+ fle) +nle) (M

where c(e) and f(e) are the complex baseband signals
representing the backscattering from tissues and flow
scatterers, respectively, and n (e ) is additive noise. The signal
in Eq. (1) can be rewritten with a 1D complex column vector
as follows:

y=[y(0) y(1) y(E—-1)]" 2

where F is the ensemble size.

1) Autocorrelation with adaptive clutter rejection {AC-ACR)

With autocorrelation-based estimation, a clutter filter is
applied to the complex baseband signal in Eq. (2) to remove
the clutter that is typically 40 to 60 dB stronger than the flow
signal (i.e., lc{e)l> If(e)]), which leads to a bias in flow
velocity estimates. In the AC method, an estimate of the first
lag of the filtered complex correlation squence, I, (1), is

obtained by

= N
Ly (1) = 5= Y yp(mly (m+1) 3)
m =0

where y, (m) is the filtered complex sequence where the
clutter has been substantially attenuated and * represents a
complex conjugate operation. The mean flow velocity can be
calculated by
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Fig. 1. Amplitude response of four different clutter filters using PI-IR filters for E=4 where the PRF represents the normalized pulse repetition frequency.
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where [, is the center frequency of the transmitted ultrasound

beam, ¢ is the sound velocity, and 7,,,; is the pulse repetition

interval.

In the present study, the adaptive clutter rejection (ACR)
method, in which a suitable clutter filter from the pre-designed
filter bank is selected based on clutter power and its
instanteneous velocities, is used as part of the AC method (i.e.,
AC-ACR)[11,19]. Fig. 1 shows the amplitude response of the
pre-designed PI-IIR filters for E=4. The more detailed
explanation of ACR can be found elsewhere[20].

2) Autoregression (AR) estimation

In the AR estimation, the Doppler signal containing the
clutter and flow is represented with the second-order AR
model. Unlike AC-ACR, the AR estimation does not require
clutter rejection since its two poles are assumed to directly
represent the clutter and flow components. The " complex
baseband data in Eq. (2) can be predicted as a linear
combination of p previous sequences

= i yle—n) &)

where a, is the prediction coefficient for the n” previous
sequence.

In the present study, we estimate a,, via the Burg algorithm
as used by others[14,15]. For the second-order AR model, two
poles are calcuated from two AR parameters (i.e., a; and a,)

by

a; \/al—k 4a, ©6)

Py ,= 2

The two velocities correponding to these two poles can be
obtained from their phases as follows:

.
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c Im(7,)

| v ©

The absolute value (i.c., a distance from the origin) of the
second pole, which is assumed to represent the flow, is used as
power. However, this absolute value may not be reliable for
removing the biased estimates with a small ensemble size (i.e.,
E=4). In the present study, we used the standard deviation
(STD) of flow estimates in a window (e.g., 5 x 5 pixels) in
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order to remove the estimates that had been biased towards
higher velocities due to noise. If the calculated STD is greater
than a threshold (LS), the estimated flow velocity, vy, Is

assigned to be 0. Otherwise, v, becomes v;.

3) Flow estimation based on eigendecomposition (ED)

In the eigendecomposition-based flow estimation, three
components (i.e., clutter, flow and noise) in the complex
baseband Doppler data in Eq. (2) are assumed to be statitically
independent[10,13]. Thus, the complex signal covariance
matrix can be expressed by

Ry= Ry, + Ry +on[ ')

where R, and R, are the covariance matrix for the clutter
Y, Y,

and flow, respectively, Jfl is the noise variance, and 7 is the

identity matrix. In the present study, the modified covariance
method was used to estimate Ry from Y because it can
provide more accurate estimates[21]. Using singular-value
decomposition (SVD)[22], Ry can be factorized as follows:

Ry= USV' (10)

where [/ and V" are the orthogonal matrices containing
singular vectors, ' is the diagnonal matrix for singular values,
and T is the conjuage transpose operation. In the ED method,
the two dominant velocities are calcuated from the phases of
the first two singular vectors (i.e., ., V; and V,) as

c - Im(V;)
T T fy [Re(Vl)} ()
c o Im(V,)
e v @

To remove the biased estimates due to noise where there is
only tissue, the ratio of the first two singular values on a
logarithm scale (i.e., 10log;,[S;/.S;]) is compared with a
predetermined threshold, 4 1. If the ratio is smaller than 4 D
(i-e., two singular values contain only tissue information), v,
is assigned to be 0 for removing the biased estimates.
Otherwise, the velocity from the second singular vector (i.e.,
v,) becomes v;. It must be noted that the computational
complexity of the ED method is much higher than that of the
AC-ACR method since it requires a computationally-
expensive SVD operation.
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Table 1, System parameters used in /7 vivostudies,

: Pordmetefs - Yoles -

k o CCA Liver Kidney 3D
Probe Linear Convex Convex Convex
Transmit center frequency [MHz] 6.5 3.5 3.5 3.5
Puise repetition frequency [kHz] 35 1 1 1
Ensemble size 10 10 10 10
Frames 36 36 36 48

B. Experimental setup procedure.

To evaluate the AC-ACR, AR and ED flow estimation
methods under different clutter conditions, 2D in vivo data
were acquired from the common carotid artery (CCA), kidney
and liver of five volunteers by a trained sonographer using a
commerical ultrasound machine equipped with a
programmable back-end system (HiVision 5500, Hitachi
Medical Systems America, Twinsburg, OH, USA). As listed
in Table 1, 36 consecutive frames of in-phase and quadrature
data with E=10 were captured after beamforming and
quadrature demodulation, but before clutter filtering and other
color Doppler processing. The acquired data were processed
off-line using MATLAB (The Mathworks Inc., Natick, MA,
USA). A 6.5-MHz linear array transducer was used for
acquiring CCA data, while a 3.5-MHz convex array
transducer was used for kidney and liver data. To compare
three estimators with E=4, only the first four data in an
ensemble of 10 were used, and then the obtained results were
compared with those from the standard AC method with
E=10. Fig. 2 shows the amplitude responses of six clutter
filters designed for the AC-ACR with E=10. Also, a 3D in vivo
kidney data set with 48 frames was acquired from a kidney
transplant patient scheduled for a renal transplant biopsy

C. Evaluation criteria

The flow signal-to-clutter ratio (SCR) that was used
previously[10,11] is difficult to utilize in case of AR
estimation with a small ensemble size, since the separation of
noise from flow is challenging based on the power estimated
from the AR poles. Therefore, a mask for the flow area was
generated using the AC-ACR method with E=10. Pixels
estimated to be flow by each estimator with E=4 and located
within the flow mask were counted as true positive (7P),
whereas those flow pixels located outside the flow mask were
counted as false positive (FP). Similarly, true negative (TN)
and false negative (FN) were generated. Fig. 3(a) and 3(b)
show the pre-scan-converted CCA color Doppler images with
velocity and power estimates, respectively, from AC-ACR
with E=10. A flow mask from the power estimate (Fig. 3(b)) is
shown in Fig. 3(c). The power estimate was used in
determining the flow mask due to their higher sensitivity to
flow compared to the velocity estimate. From the four groups
(ie., TP, FP, TN and FN), the sensitivity and specificity of
each estimator are computed by
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Fig. 2. Amplitude response of six polynomial regression (PR) and PI-IR filters for E=10.
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Fig. 3. Pre-scan-converted color Doppler image with (a) velocity estimates and {b} power estimates, and (c) flow mask.

Sensitivity = 1 (13)
ST = TP Y EN
e TN
Specificity = TN P (14)

We performed an ROC analysis where the sensitivity and
specificity of the ED estimator were investigated by adjusting
the power threshold (i.e., AD=-10, -20, -30, -40, -50 and -60
dB). For the AR estimator, we computed the standard
deviation (STD) of flow estimates with 3 different window
sizes (i.e., 3x3, 5x5 and 7x7 pixels) and used 6 different LS
threshold values (i.e., 0.15, 0.20, 0.25, 0.30, 0.35 and 0.40
PRF) to separate flow from noise. For the AC-ACR estimator,
we adjusted the power gain (PG) to measure its sensitivity and
specificity (i.e., PG=1.5,2.5,3.5,4.5, 5.5, and 6.5). The area
under the ROC curve (AUC) for each estimator was
computed. The obtained AUC values from the AC-ACR, AR
and ED estimators were analyzed by a two-sided ANOVA, In

+21.5 cmifs

the present study, a p-value less than 0.05 is considered as
statistically significant.

lif. RESULTS & DISCUSSION

A. 2D invivo data

Fig. 4 shows the color Doppler images with velocity
estimates obtained from the CCA of Subject 1 for E=4 by
applying the AR, ED and AC-ACR methods where Fig. 4(a)
shows the reference image generated by the AC-ACR method
with E=10. For the AR method, the best result was obtained
with L5=0.3 PRF and a window size of 5x5 pixels. Similarly,
an optimal value for 4D and PG was determined to be -50 dB
and 3.5 for the ED and AC-ACR methods, respectively. As
shown in Fig. 4, the three flow estimation methods show
comparable results upon visual assessment.

The ROC curves for the AR, ED and AC-ACR estimators,
where the FP fraction (1-specficity) and the TP fraction
(sensitivity) are plotted, were generated by adjusting

—21.5 cms

Fig, 4. Color Doppler images obtained from the common carotid artery (CCA) of the Subject 1 by applying (a) autocorrelation (AC) with the ACR (AC-ACR) when
E=10 as the reference, (b) autoregression (AR), {c) eigendecomposition (ED), and (d) AC-ACR methods. E represents the ensemble size.
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Fig. 5. Receiver operating characteristic (ROC) curves when applying the AR, ED and AC-ACR estimators info the 2D CCA data for £=4. The dashed black, dotted
blue and solid red lines represent the fitted lines for the AR, ED and AC-ACR estimators, respectively.

parameters (i.e., LS, AD and PG) as shown in Fig. 5. The AR
estimator exhibits the higher TP values, particularly at lower
FP values than the ED and AC-ACR estimators for E=4.

The overall performance of the three estimators is
quantified by measuring the area under the ROC curve (AUC)
for all five subjects. The computed AUC values are tabulated
in Table 2. As listed in Table 2, in case of the CCA data, the
AR estimator provides the higher AUC value compared to the
ED and AC-ACR estimators (e.g., 0.931 vs. 0.882 and 0.895,

respectively). However, we have found that the AR estimator
suffers from the outliers that occur during systolic phase
because the true flow estimates are misinterpreted as biased
estimates.

Compared to the CCA data, the kidney and liver data
typically have lower SNRs and flow signal strengths due to
longer penetration depth, which make velocity estimation
challenging. Fig. 6 shows the kidney color Doppler images
when using L5=0.3 PRF and a window size of 3x3 pixels,

Table 2, Area under receiver operating characteristic (ROC) curve (AUC). When E=10, the AUC s 1.

E=4 :
Data Subjects
) AR ED AC-ACR
1 0.938 0.882 0.893
2 0.920 0.875 0.897
3 0.944 0.904 0.903
CCA
4 0.922 0.877 0.887
5 0.933 0.873 0.894
Mean 0.931 0.882 0.895
1 0.773 0.80%9 0.864
2 0.786 0.798 0.839
3 0.819 0.838 0.867
Kidney
4 0.808 0.818 0.851
5 0.779 0.800 0.847
Mean 0.793 0.813 0.852
1 0.802 0.838 0.863
2 0.801 0.812 0.837
3 0.809 0.824 0.862
Liver
4 0.810 0.826 0.855
5 0.812 0.816 0.860
Mean 0.807 0.823 0.855
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Fig, 6, Color Doppler images obtained from the kidney by applying (a) AC-ACR with E=10 as the reference, (b) AR, (c) ED, and (d) AC-ACR methods.

AD=-60 dB and PG=3.5. The ED and AC-ACR estimators
provide higher sensitivity than the AR estimator when we
cotpare Fig, 6(b)-6(d). Blood flow in the renal medulla and
cortex is more clearly visualized in Fig. 6(c) and 6(d). In
addition, the ED and AC-ACR estimators show more
continuous arterial (red) and venous (blue) flow. These results
are consistent with the ROC curves shown in Fig. 7. The ED
and AC-ACR estimators provide higher sensitivity and
specificity (i.e., higher 7P and lower FF) compared to the AR
method. Moreover, as listed in Table 2, the AC-ACR
outperforms the ED in terms of AUC for E=4 (0.852 vs. 0.813,
p<0.01).

The advantage of the ED and AC-ACR estimators over the
AR estimator is more clearly demonstrated in Fig. 8 where the
liver color Doppler images from Subject 1 are visualized when
using L5=0.25 PRF and a window size of 3x3, 4D=-60 dB and
PG=3.5. Similar to the kidney case, the ED and AC-ACR
estimators show improved sensitivity compared to the AR
estimator. For example, the hepatic vein branches (red) in the

liver parenchyma are more clearly shown in FE=4.
Furthermore, while the AR cannot visualize the flows in the
inferior vena cava (IVC), it is clearly depicted by the ED and
AC-ACR estimators. The ROC curves for the liver data are
shown in Fig. 9. The AC-ACR method outperforms the AR
and ED estimators in terms of the sensitivity and specificity.
This result is consistent with Table 2 where the AC-ACR
provides higher AUC values compared to the ED and AR
estimators for E=4 (i.e., 0.855 vs. 0.823 and 0.807, p<0.01).

B. 3D in vive data

Fig. 10 shows the color Doppler images with the velocity
estimates obtained from a kidney transplant patient by
applying AC-ACR for E=10 and E=4. The AC-ACR with
E=10 in Fig. 10(a) is considered as the reference. Fig. 10(b)
with E=4 shows comparable results upon visual examination
against the reference. It successfully visualizes not only the
iliac artery but also arcuate arteries in the renal parenchyma.
The performance of AC-ACR with E=4 was quantified by
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Fig. 7. ROC curves when applying the AR, ED and AC-ACR estimation methods to the 2D kidney data for E=4,
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Fig. 8. Color Doppler images obtained from the liver by applying the (a) AC-ACR with E=10 as the reference, (b) AR, (¢) ED, and (d) AC-ACR methods.
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Fig. 9. ROC curves when applying the AR, ED, and AC-ACR estimators into the 2D liver data for E=4,

measuring AUC by changing the PG from 1.5 and 6.5, which
led to the AUC value of 0.824.

The impact of lowered flow detection sensitivity with a
smaller ensemble size was investigated by reconstructing the
3D wvascular structures of the same patient’s transplanted
kidney as shown in Fig. 11 where two different views are
shown. Compared to the reference rendered image (i.e.,
AC-ACR with E=10) in Fig. 11(a), Fig. 11(b) (E=4) shows

+711.3 cm/s

Twis
rexial artery

liac arterysg”

| A——

~11.3 cm/s

comparable results in visualizing the vasculatures of the
transplanted kidney. Although AC-ACR with a smaller
ensemble size (E=4) lowers the sensitivity in flow detection
(e.g., detecting arcuate arteries in the renal medulla and
cortex), its impact on 3D vascular visualization is not
perceivable as demonstrated in Fig. 11. In addition, it can
successfully visualize the twisted renal artery in Fig. 11(b).
AC-ACR with E=4 could double the volume acquisition rate

Fig. 10. Color Doppler images with the velocity estimates obtained from subject 1 by applying the AC-ACR method for (a) E=10 and (b) E=4.
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Fig. 11. Rendered color Doppler images with the power estimates obtained from the kidney fransplant patient by applying the AC-ACR when (a) E=10 and (b) E=4

for two different viewing angles.

compared to the reference with E=10 for 3D CDL

In summary, for the CCA case, the AR estimator
outperforms the ED and AC-ACR estimators where the SNR
and flow signal strength are higher than the kidney and liver
cases. However, it suffers from the unwanted rejection of flow
estimates due to aliasing. This aliasing can be avoided using a
higher PRF, but the AR estimator would compronuse its
sensitivity to low velocity flow. In addition, its performance is
degraded in case of the kidney and liver data. On the other
hand, the ED estimator shows promising results in that it can
reliably estimate flow velocities with small ensemble sizes. In
the present study, only temporal samples in Eq. (2) were
utilized to estimate the complex signal covariance matrix in
Eq. (9), since it was not possible to access undecimated RF
samples in the ultrasound machine we used. Using the RF
samples together with the temporal samples, the robustness of
the covariance matrix estimates could be improved. However,
it will increase the computational complexity substantially due
to a higher estimation order {(p). The AC-ACR estimatior
provides comparable results to the ED estimator. On the other
hand, its computational requirement is much less than that of
the ED estimator. Thus, AC-ACR would be more suitable for
3D CDIin order to improve the volume acquisition rate. Using
AC-ACR with E=4, we can theoretically improve the volume
acquisition rate by 2.5, compared to E=10.

V. CONCLUSION

To improve the temporal resolution in 3D CDI, an efficient
flow estimation method that can provide robust estimates with
a small number of pulse transmissions would be desired. In
this paper, three flow estimation methods were evaluated
using 2D and 3D in vive data under different clutter
conditions. From the 2D in vivo studies, the AC-ACR
estimation method provides higher sensitivity with low
variance in flow estimates compared to the AR method, while

yielding similar specificity. In addition, it shows similar
results compared to the ED estimator with a lower
computational burden. Moreover, from the 3D in vivo study,
AC-ACR with a smaller ensemble size shows its capability in
visualizing the complex vascular morphology of the
transplanted kidney. These results indicate that the AC-ACR
estimation method could be useful for improving the volume
acquisition rate in 3D CDI by reducing the number of pulse
transmissions.
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