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Abstract 
 

In an identity-based threshold broadcast encryption (IDTHBE) scheme, a broadcaster chooses 
a set of n recipients and a threshold value t, and the plaintext can be recovered only if at least t 
receivers cooperate. IDTHBE scheme is different from the standard threshold public key 
encryption schemes, where the set of receivers and the threshold value are decided from the 
beginning. This kind of scheme has wide applications in ad hoc networks. Previously 
proposed IDTHBE schemes have ciphertexts which contain at least n elements. In addition, 
the security of theses schemes relies on the random oracles. In this paper, we introduce two 
new constructions of IDTHBE for ad hoc networks. Our first scheme achieves |S|-size private 
keys while the modified scheme achieves constant size private keys. Both schemes achieve 
approximately (n-t)-size ciphertexts. Furthermore, we also show that they are provable 
security under the decision bilinear Diffie-Hellman Exponent (BDHE) assumption in the 
standard model. 
 
 
Keywords: Identity-based encryption, broadcast encryption, threshold broadcast encryption, 
provable security, standard model 
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1. Introduction 

The concept of Broadcast Encryption (BE) was introduced by Fiat and Naor in [1]. In a 
broadcast encryption scheme a broadcaster encrypts a message for some subset S of users who 
are listening on a broadcast channel. Any user in S can use his/her private key to decrypt the 
broadcast. Any user outside the privileged set S should not be able to recover the message. The 
threshold broadcast encryption (TBE) problem is generalization of the concept of broadcast 
encryption. It was first introduced by Ghodosi et al. [2]. In their scheme, there was a set of N 
receivers and a subset of n privileged receivers. A broadcaster encrypts a message and 
broadcasts the corresponding ciphertext to all receivers. In such a way, the cooperation of at 
least t users from the privileged set can recover the original message. TBE has some 
advantages over traditional threshold encryptions: (1) The trusted party is eliminated and the 
system can be set up by individual users independently; (2) The broadcaster can choose the 
privileged set and the threshold value at the time of encryption. Note that, when t=1, the 
resulting scheme will be a broadcast encryption scheme [1].  

Identity-Based encryption was originally proposed by Shamir [3], which a major advantage 
was that it allowed one to encrypt a message by using recipient’s identifiers such as an email 
address. Now it has been an active area. The first practical identity-based encryption (IBE) 
scheme was proposed in 2001 by Boneh and Franklin [4], which was provably secure against 
adaptive chosen ciphertext attack in random oracle model. Then, many other kinds of 
identity-based encryption were proposed [5][6][7][8][9]. Identity-based cryptography 
significantly reduces the system complexity and the cost for establishing and managing the 
public key authentication framework known as PKI (Public Key Infrastructure). As a result, 
we focus on the construction of identity-based threshold broadcast encryption (IBTHBE) in 
this paper. To the best of our knowledge, very few works have dealt with this problem. In [10], 
Chai and Cao et al proposed a scheme based on identity. But the length of the ciphertexts was 
n +1 and the security relied on the random oracles. Vanesa Daza et al proposed another 
scheme [11]. However, its security was still relying on the random oracles. The recent work 
[12] had short ciphertexts, but the security of their IBTHBE scheme also relied on the random 
oracles. 

In this paper, we propose two new efficient identity-based threshold broadcast encryption 
schemes. The proposed schemes are constructed in the standard model (without using random 
oracles) and achieve approximately (n-t)-size ciphertexts. The threshold value and the 
privileged set can be picked dynamically by the broadcaster. In addition, under the 
selective-identity security model, we reduce the security of our schemes to the decision 
bilinear Diffie-Hellman Exponent (BDHE) assumption. 

2.  Preliminaries 

2.1 Bilinear Groups 
We briefly review bilinear maps and use the following notations: 

1. G and 1G  are two (multiplicative) cyclic groups of prime order p; 
2. g is a generator ofG . 
3. e  is a bilinear map e : 1G G G× → . 



402                                                            Zhang et al.: Identity-based Threshold Broadcast Encryption in the Standard Model 

Let G and 1G  be two groups as above. A bilinear map is a map e : 1G G G× →  with the 
properties: 

1. Bilinearity: for all , ,u v G∈  , pa b Z∈ , we have ( , ) ( , )a b abe u v e u v= . 
2. Non-degeneracy: ( , ) 1e g g ≠ . 
3. Computability: There is an efficient algorithm to compute ( , )e u v  for all ,u v G∈ . 

2.2 Decisional bilinear Difiie-Hellman Exponent assumption (BDHE) 

The decisional bilinear Difiie-Hellman Exponent (BDHE) problem is defined as follows. 
Algorithm B is given as input a random tuple  

(g , h0, y1,L , ny , yn+2,L , y2n+2, T), 

 where yi = 
i

gα . Algorithm B's goal is to output 1 when T = e(g,h0
1

)
nα + and 0 otherwise. Let   

TU =(g , h0, y1,L , yn, yn+2,L , y2n+2). Algorithm B that outputs b {0,1}∈  has advantage ε  in 
solving decision BDHE in G if  

|Pr[B(TU, e(g,h0
1

)
nα + ) = 0]-Pr[B(TU, T) = 0]|≤ ε . 

Definition 1: The (t, ε ) decisional BDHE assumption holds if no t-time algorithm has a 
non-negligible advantage ε  in solving the above game. 

2.3 Identity-based Threshold Broadcast Encryption (IDTHBE) 
More formally, a threshold broadcast encryption scheme consists of five algorithms.  

Setup: The randomized Setup algorithm takes as input a security parameter k and outputs 
some public parameters params, which will be common to all the users of the system. 

Extract: The key generation algorithm is run by each user IDi. It takes as input some public 
parameters params and returns a correspondence private key

iIDd . 
Threshold Encryption: The encryption algorithm takes as input a set of public keys 

corresponding to a set P of n receivers, a threshold t satisfying 1≤ t≤  n, and a message M. The 
output is a ciphertext C, which contains the description of P and t. 

Partial Decryption: Partial Decryption algorithm takes as input a ciphertext C for the pair 
(P, t) and a secret key 

iIDd  of a receiver. The output is a partial decryption value ik  or a 

special symbol ⊥. 
Decryption: The deterministic final decryption algorithm takes as input a ciphertext C for 

the pair (P, t) and t partial decryptions corresponding ki to receivers in some subset S⊂ P. The 
output is a message m or a special symbol ⊥. 

2.4 Security Model 
There have been many methods to convert an IND-sID-CPA (Chosen plaintext secure under 
the selective-identity model) scheme to an IND-sID-CCA (Chosen ciphertext secure under the 
selective-identity model) scheme. Therefore, we only focus on constructing the IND-sID-CPA 
scheme in this paper. To define the notion of IND-sID-CPA, let us consider the following 
game between an adversary A and a challenger:  

Init: The adversary A firstly outputs a set *S ={ * *
1 , , nID IDL } of identities that he wants to 

attack and a set S% of identities that he wants to corrupt, with *| | 1S n≤ −  and *| | 1S S t≤ −% I .  
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Setup: The challenger runs Setup. Then challenger gives the resulting common parameter to 
A, and keeps master key secret. A issues the threshold parameters (n, t). 

Query Phase 1: The adversary A adaptively issues private key extraction queries q1,L , qs0 , 
where qi is one of the following: 

Extraction query: On a private key extraction query upon IDi with the constraint 
that iID ∉ *S , the challenger runs Extract to generate the private key associated to IDi, then 
sends it to A. 

Challenge: When A decides that phase 1 is over, A outputs two same-length messages M0 
and M1 on which it wishes to be challenged. The challenger picks a random b {0,1}∈  and sets 
the challenge ciphertext *C =Encrypt(params, bM , *S ). The challenger returns *C  to A. Note, 
A may already have learned about the private keys of at most t-1. 

Query phase 2: The adversary continues to issue queries qs0+1,L , q, where qi is one of the 
following:   

Extraction query (IDi): as in phase 1. 
Guess: Finally, the adversary A outputs a guess {0,1}b′∈  and wins the game if b =b′ . 

3. New Constructions 

3.1 Basic Construction 

Let S = { 1, , nID IDL } be n players where iID ∈ pZ . These users want to form an ad hoc 
network. Our construction works as follows: 

Setup: To generate the system parameters, the PKG picks randomly generators 
{ 2,g g , 1, , , nh h hL } in G  and an element α  from pZ . Note that any user iID  will be 

associated to a different element it . This can be done by defining it = f ( iID ) for some n-1 

degree polynomial function ( )f x , where (0)f α= . PKG sets  it
iT g=  for  1 i n≤ ≤  and 

1g gα= . The public parameters PK are  
PK =( 1 2 1 1, , , , , , , , ,n ng g g T T h h hL L ) 

and the master key  is  α .  
Extract(IDi) : To generate a private key for a user iID pZ∈ , the PKG picks randomly 

i pr Z∈ , and outputs the private key:  

0 0 1 ( 1) ( 1)( , , , , , , , )
iID i i i i i i i ind d d d d d d− +′= L L  

              = ( 2 1 1 1( ) , , , , , ,i i i i i i i it ID r r r r r r
i i i ng h h g h h h h− +L L ). 

Threshold Encryption: To encrypt a message M  for a set S = 1{ , , }nID IDL  of n players, 
with threshold t n≤  for the decryption, the idea is to set up an ( ,n N )-threshold secret sharing 
scheme, where 2N n t= − . The n public keys ( 1, , nT TL ) of users implicitly define a 

1n − degree polynomial. The idea is to compute the values of this polynomial in the points 
0x = (This will lead to obtain the value of 1g ).Then a sender acts as follows: 

 Select a random element *
ps Z∈ and compute 1

sC g= , 2 1 2( , )sC e g g M=  and 
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3
1

( )i

n
ID s
i

i

C h h
=

= ∏ . 

 Choose a set S  of n t−  dummy players, such that S S φ=I . For each user 

iID S′ ∈ , compute  ij

i
i iID S

T T λ

∈
′=∏ and 

2

1
( , )i s

i

K
e T g

=
′

, where ijλ denotes the 

Lagrange coefficients. 
 The ciphertexts are 1 2 3( , , ,{ } )

ii ID SC C C K ′∈ . 

Note: 
2 2

1 1
( , ) ( , )ii ts s

i

K
e T g e g g′= =

′
 by using Lagrange interpolation where ( )i it f ID′ ′= . 

Partial Decryption: Given the ciphertexts 1 2 3( , , ,{ } )
ii ID SC C C K ′∈ , the receiver iID S∈  

with his corresponding private 
iIDd computes as follows: 

3 0

20 11,

( , ) 1
( , )( , ) ij

i
i n t sID

i ijj j i

e C dK
e g ge d d C

= ≠

′
= =

∏
. 

Decryption: Given the valid ciphertexts 1 2 3( , , ,{ } )
ii ID SC C C K ′∈ , a subset 1S S⊂ with 

1| |S t=  and corresponding t  partial decryptions, the algorithm computes with the whole set 

1S S S′ = U  as follows: 

0i

i

i
ID S

K K λ

′∈

= ∏ =
1 2

1
( , )se g g

. 

and 2M K C= ⋅ . 

3.2 The Modified Construction 
Our basic construction has short ciphertexts in the standard model, but the size of the private 
achieves |S|-size. In this section, we modify it such that the size of the private achieves 
constant.  

Let S = { 1, , nID IDL } be n users, where iID ∈ pZ . These users want to form an ad hoc 
network. 

Setup: To generate the system parameters, the PKG picks randomly generators 
{ 2,g g , 1, , , nh h hL } in G  and an element α  from pZ . Note that any user iID  will be 

associated to a different element it . This can be done by defining it = f ( iID ) for some n-1 

degree polynomial function ( )f x , where (0)f α= . PKG sets  it
iT g=  for  1 i n≤ ≤  and 

1g gα= . The public parameters PK are  
PK =( 1 2 1 1, , , , , , , , ,n ng g g T T h h hL L ) 

and the master key is α .  
Extract(IDi): To generate a private key for a user iID pZ∈ , the PKG generates a random ri 

pZ∈ , and outputs the private key:  

0 1( , )
iID i id d d=  
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                                                                    = ( 2 1
( ) ,i i i i

nt ID r r
ii

g h h g
=∏ ). 

Threshold Encryption: To encrypt a message M  for a set S = 1{ , , }nID IDL  of n players, 
with threshold t n≤  for the decryption, the idea is to set up an ( ,n N )-threshold secret sharing 
scheme, where 2N n t= − . The n public keys ( 1, , nT TL ) of users implicitly define a 

1n − degree polynomial. The idea is to compute the values of this polynomial in the points 
0x = (This will lead to obtain the value of 1g ).Then a sender acts as follows: 

 Select a random element *
ps Z∈ and compute 1

sC g= , 2 1 2( , )sC e g g M=  and 

3
1

( )i

n
ID s
i

i

C h h
=

= ∏ . 

 Choose a set S  of n t−  dummy players, such that S S φ=I . For each user 

iID S′ ∈ , compute ij

i
i iID S

T T λ

∈
′=∏ and

2

1
( , )i s

i

K
e T g

=
′

, where ijλ denotes the Lagrange 

coefficients. 
 The ciphertexts are 1 2 3( , , ,{ } )

ii ID SC C C K ′∈ . 

Note: 
2 2

1 1
( , ) ( , )ii ts s

i

K
e T g e g g′= =

′
 by using Lagrange interpolation where ( )i it f ID′ ′= . 

Partial Decryption: Given the ciphertexts 1 2 3( , , ,{ } )
ii ID SC C C K ′∈ ), the receiver iID S∈  

with his corresponding private 
iIDd computes as follows: 

                                                  3 1

0 1 2

( , ) 1
( , ) ( , )i

i
i t s

i

e C dK
e d C e g g

= = . 

Decryption: Given the valid ciphertexts 1 2 3( , , ,{ } )
ii ID SC C C K ′∈ , a subset 1S S⊂ with 

1| |S t=  and corresponding t  partial decryptions , the algorithm computes with the whole set 

1S S S′ = U  as follows: 

0i

i

i
ID S

K K λ

′∈

= ∏ =
1 2

1
( , )se g g

. 

and 2M K C= ⋅ . 
Security analysis is similar to our basic scheme. So we omit it. 

3.3 Efficiency 
In our schemes, the size of ciphertexts is approximately n t− . They are constructed in the 
standard model for the identity-based threshold broadcast encryption. In addition, if the values   

1 2( , )e g g and 2( , )ie T g can be precomputed and cached, so no pairing computations are 
needed at the phase of Threshold Encryption. Table 1-3 give the comparisons between our 
schemes and the others IDTHBEs. 
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Table 1. Comparison I of the Efficiency with the others IDTHBE 

Schemes Hardness 
Assumption 

Ciphertext 
Size 

Private Key
Size 

Without 
Relying on R.O. 

[10] BDH n +2 1 NO 
[11] BDH n t− +4 1 NO 
[12] (l,m,t)-MSEDDH 2 2 NO 

Our 1st scheme BDHE n t− +3 n+1 YES 
Our 2nd scheme BDHE n t− +3 2 YES 

 
Note: En. and De. denote the phase of Encryption and Decryption respectively. R.O. denotes 
the random oracles. 

 
Table 2. Comparison II of the Computation Efficiency with the others IDTHBE 

Schemes Parings  PM M Ex Mi 
En. De. En. De. En. De. En. De. En. De. 

[10] 0 2 t  2n+1 t n+t 0 1 t 0 0 
[11] 3 t  2 t  2n+8 3n+t 0 0 1 n 0 0 
[12] 0 t +1 0 1 m+t 2(m+t) m+1 2 1 ( ≈ )t2+t+2 

Our 1st 
scheme 0 2 n+1 n n n n+3 2n n-t 0 

Our 2nd 
scheme 0 2 n+1 n n 0 n+3 n n-t 0 

 

In Table 2,  PM denotes point multiplications operations, M multiplications operations, Ex 
exponentiation operations, Mi modular inverse. In addition, m denotes the maximal size of 
an authorized set and n m≤ . It is worth noting that the computation cost is mainly denoted by 
pairing operations since one pairing operation is about 11110 multiplications (We assume that 
all schemes are all using the GDH group derived from the curve 1633

/E F  defined by the 
equation y2 = x3 − x + 1). Hence our schemes are more efficient in terms of computation cost 
than others. In fact, let (m,n,t)=(200,100,50) and obtain a concrete computation cost (see Table 
3). We would also like to point out that in a mobile ad hoc networks, it is not common to have 
a very large group. 
 

Table 3.  Comparison III of the Computation Efficiency with the others 
IDTHBE((m,n,t)=(200,100,50)) 

Schemes [10] [11] [12] Our 1st 
scheme 

Our 2nd 
scheme 

Computation cost ( ≈ )87 s ( ≈ )217.5s ( ≈ )44.37 s ( ≈ )1.194s ( ≈ )1.194s 

 
In Table 3, s denots cputime (Second).  In addition, we only consider the computation cost of 

the En. and De. phases. All experiments are run on a personal computer with Pentium Dual 
core E6500 ( 2.94 GHz) and a maximum of 2.0 GB of the memory available. The program of 
the algorithms is written in Matlab 7.1 language.  
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4. Security Analysis 
This section is devoted to the proof of the IND-sID-CPA security for our construction.  

Theorem 1: Suppose the decision BDHE assumption holds. Then the proposed scheme 
above is semantically secure against selective identity, chosen plaintext attacks (IND-sID- 
CPA). 

Proof: Suppose an adversary A has advantage ε in attacking our scheme. Using A, we build 
an algorithm B that solves the decision BDHE problem in G with the advantageε . For a 
generator g∈G and α ∈Zp, set yi =

i

gα ∈G. Algorithm B is given as input a random tuple (g, h0, 

y1,L , yn, yn+2,L , y2n+2, T). Algorithm B's goal is to output 1 when T = e(g,h0
1

)
nα +  and 0 

otherwise. Algorithm B works by interacting with A in a threshold selective-identity game as 
follows: 

Init: A outputs a set *S = ( * *
1 , , nID IDL ) of identities that it wants to attack, and a set S% of 

identities that it wants to corrupt, with *| | 1S n≤ − and *| | 1S S t≤ −% I . 
Setup: B does the following:  

 First, B selects 1n − random integers 1 2 1, , , nα α α −L ∈ pZ . Let ( )f x be the degree 

1n −  polynomial implicitly defined to satisfy (0)f α=  and ( )i if ID α=  for 

iID S∈ % , note that B does not know f since it does not know α . For iID S∈ % , B 

computes i
iT gα= . Otherwise, B computes  

iα = ( )if ID  = 
1

0
1

n

j j
j

λ α λ α
−

=

+∑  

with the Lagrange coefficients jλ . Note that these Lagrange coefficients are easily 
calculated since they do not depend on f . Then B sets  

0
1

j

j
i jID S

T g T λλ
∈

= ∏ % . 

 Next, B picks randomly *
pZγ ∈  and sets 1 1g y gα= = , 2 ng y g γ=

n

g γ α+= . Then B 

selects randomly 1 2, , , nγ γ γL  in *
pZ  and sets 1/i

i n ih g yγ
− +=  for 1 i n≤ ≤ . In addition, 

B selects randomly *
pZυ∈  and sets 

*

11
i

n ID
n ii

h g yυ
− +=

= ∏ . 
 Finally, B gives the public keys PK=( 1 2 1 1, , , , , , , , ,n ng g g h T T h hL L ) to A. 
Query phase 1: A issues up to qs private key generation queries to the uncorrupt servers. 

Each query qi works as follows: Suppose A asks for the private key corresponding to an 
identity * *

iID S∉ . The restriction ensures that ID * 0iID− ≠ . B first computes the Lagrange 

coefficients 0 1 1, , , nλ λ λ −L  such that ti = f(IDi) = 
1

0
1

n

j j
j

λ α λ α
−

=

+∑ . Then B selects a random r∈  

Zp and computes the corresponding private key 0 0 1 ( 1) ( 1)( , , , , , , , )
iID i i i i i i i ind d d d d d d− +′= L L  as 

follows: 
( 2 1 1 1( ) , , , , , ,i i i i i i i it ID r r r r r r

i i i ng h h g h h h h− +
% % % % % %L L ), 

where 0
*

i

i
i i

r r
ID ID
λ α

= +
−

% . In fact,  



408                                                            Zhang et al.: Identity-based Threshold Broadcast Encryption in the Standard Model 

( )i iID r
ih h % =

*

1 11
(( / ) )ji i i

n IDID r
n i n jj

g y g yγ υ
− + − +=∏ %  

                          =
**

1 11,
( )ji i i i i

n IDID ID ID r
n i n jj j i

g y g yγ υ υ+ −
− + − += ≠∏ %  

=
**

1 11,
( ) ( )ji i i i i i

n IDID ID r ID r
n i n jj j i

y g yγ υ− +
− + − += ≠∏% % , 

where     

                                         
*

1( )i i iID ID r
n iy −
− +

% =
0

* * *

1 1( ) ( )
i

ID IDi i i i i iID ID ID IDr
n i n iy y

λ α

−− −
− + − +  =

*

0
1

1

( )i iID ID r
n i

n

y
yλ

−
− +

+

. 

Therefore, one can obtain  
                                            ( )i iID r

ih h % =
* *

0
1 1 11,

( ) ( )ji i i i i
n IDID r ID ID r

n j n i nj j i
g y y yγ υ λ+ −

− + − + += ≠∏ % .                     (1) 

Then we have  

                                     2 ( )i i it ID r
ig h h %  =

1
0 1

2 ( )
n

j jj i iID r
ig h h

λ α λ α
−

=
+∑ % = 

1

10
2 2 ( )

n
j jj i iID r

ig g h h
λ αλ α

−

=∑ %  

                                                        =
1

10
2( ) ( )

n
j jj i iID r

n iy g g h h
λ αλ αγ

−

=∑ % =
1

1
10 0

1 2 ( )
n

n j jj i iID r
ig g g h h

λ αλ α λ γ
−

+
=∑ %  

                                                        =
1

10 0
1 1 2 ( )

n
j jj i iID r

n iy g g h h
λ αλ λ γ

−

=

+
∑ % , 

According (1), we have  

                                       2 ( )i i it ID r
ig h h %   =

1

10 0
1 1 2

n
j jj

ny g g
λ αλ λ γ

−

=

+
∑ * *

0
1 1 11,

( ) ( )ji i i i i
n IDID r ID ID r

n j n i nj j i
g y y yγ υ λ+ −

− + − + += ≠∏ %  

                                                       =
1

10
1 2

n
j jjg g

λ αλ γ
−

=∑ * *

1 11,
( ) ( )ji i i i i

n IDID r ID ID r
n j n ij j i

g y yγ υ+ −
− + − += ≠∏ % . 

Note that all the terms in this expression are known to B. Hence, B can compute the first 
private key component. In addition, B computes 

0 0
* *

i

ID ID ID IDi i i ir r
ig y g g

λ λ α

− −= = irg % . 
Then B can obtain the second private key component. Similarly, the remaining elements are 
obtained. So 0 0 1 ( 1) ( 1)( , , , , , , , )

iID i i i i i i i ind d d d d d d− +′= L L  is a valid respondence to A. 
Challenge: A outputs two same-length messages M0 and M1 on which it wishes to be 

challenged. B picks a random b {0,1}∈  and constructs the challenge ciphertexts as follows: 
*C = * * *

1 2 3( , , ,{ })iC C C K  

                                                         =
*

1

00 1 0 0( , ( , ) , ,{ } )
n

i ii

i

ID
b i ID Sh M e g h T h Kυ γγ =

+
∈

∑  
where S0 is a set of n - t dummy users. In addition, Ki is computed in the following manner. 

B first chooses a set 0S  of n t−  dummy users such that *
0S S φ=I . For each dummy 

user 0iID S∈ , B computes the Lagrange coefficients  jiλ  with 1 j n≤ ≤  such that 

* *( )
i

j j ji iID S
t f ID λ α

∈
′ ′= =∑ , where iα′  is known to B since B can compute it by using 

1 2 1( , , , )nα α α −L  and satisfies i
ig Tα′ = . Then B computes * *

ji

i
j iID S

T T λ

∈
′ =∏ . Finally, B 

computes   

                                                        
1

20

1

( , )
n ji iii

e h g
K

λ α ′∑ =
= . 
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Let 0h g μ=  for some unknown pZμ∈ . If 
1

0( , )
n

T e g h α +

= , one can obtain that *C is a valid 

encryption for bM . In fact,  

                             *
1C = g μ , 

                             *
2C = 1 0( , )bM e g h Tγ = 1 0( , )bM e g hγ 1

0( , )
n

e g h α +

 

                                  = 1 0( , )bM e g hγ 1

0( , )
n

e g hα +

 = 1 1( ( , ) ( , ))
n

bM e g g e g gγ α μ  

                                  = 1( , )b nM e g g yγ μ = 1 2( , )bM e g g μ . 

                             *
3C =

*
1

0

n
i ii

IDhυ γ
=

+∑ =
*

1( )
n

i ii
IDgυ γ μ=

+∑ =
*

1

( )j j
n

ID

j

g gγ υ μ

=
∏  

=
* *

1 1
1 1

( ( ) ( ) )j j j
n n

ID ID
n j n j

j j

g y g yγ υ μ
− + − +

= =
∏ ∏ =

1

( )i

n
ID
i

i

h h μ

=
∏ . 

and  

1
20

1

( , )
n ji iii

e h g
K

λ α ′∑ =
= = 1

2

1

( , )
n ji iie g g

λ α μ′∑ =
= 1

2

1

( , )
n ji iie g g

λ α μ′∑ =
=

21

1
( , )

n ji
ii

e T gλ μ
=∏ =

2

1
( , )ie T g μ′ . 

IfT is a random element of 1G , *C gives no information about B's choice of b. 
Phase 2: The adversary continues to issue queries and B responds as in phase 1. 
Guess:  A outputs a guess {0,1}b′∈  and wins the game if b b′ = . If b b′ = , B will output 1 

to indicate that B solves the DBDHE problem, otherwise it outputs 0 to mean that it learns 
nothing from *C . 

When A outputs 1, it means 1
2| ( ) |Pr b b ε′= − ≥ . Otherwise 1

2( )Pr b b′= = . Therefore we 
have  

1 1 1
0 2 2| ( ( , ( , ) ) 0) ( ( , ) 0) | | |

n

Pr B TU e g h Pr B TU Tα ε ε
+

= − = ≥ ± − = . 

5. Conclusions 
We propose two new constructions of identity-based threshold broadcast encryption in the 
standard model. In our schemes, the broadcaster can dynamically choose the set of n recipients 
and the threshold value t. Both schemes have short ciphertexts, where the length of ciphertexts 
achieves n-t. In addition, we reduce their security to the decision bilinear Diffie-Hellman 
Exponent (BDHE) problem under the selective-identity security model. 

Unfortunately, our scheme only achieves the selective-identity security. In addition, in our 
schemes, the total number of possible users must be fixed in the setup. It is an interesting 
problem to construct a scheme without the above constraints in the standard model. 
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