DOI QR코드

DOI QR Code

THE GALAXY-BLACK HOLE CONNECTION IN THE LOCAL UNIVERSE

  • Received : 2010.07.27
  • Accepted : 2010.08.24
  • Published : 2010.09.30

Abstract

Recent results from large surveys of the local universe show that the galaxy-black hole connection is linked to host morphology at a fundamental level and that there are two fundamentally different modes of black hole growth. The fraction of early-type galaxies with actively growing black holes, and therefore the AGN duty cycle, declines significantly with increasing black hole mass. Late-type galaxies exhibit the opposite trend: the fraction of actively growing black holes increases with black hole mass. Issues of AGN selection bias and prospects for near-future efforts with high redshift data are discussed.

Keywords

References

  1. Antonucci, R., 1993, Unified Models for Active Galactic Nuclei and Quasars, ARA&A, 31, 473 https://doi.org/10.1146/annurev.aa.31.090193.002353
  2. Baldwin, J. A., Phillips, M. M., & Terlevich, R., 1981, Classification Parameters for the Emission-Line Spectra of Extragalactic Objects, PASP, 93, 5 https://doi.org/10.1086/130766
  3. Benson, A. J., Bower, R. G., Frenk, C. S., Lacey, C. G., Baugh, C. M., & Cole, S., 2003, What Shapes the Luminosity Function of Galaxies?, ApJ, 599, 38 https://doi.org/10.1086/379160
  4. Bernardi, M., Sheth, R. K., Nichol, R. C., Schneider, D. P., & Brinkmann, J., 2005, Colors, Magnitudes, and Velocity Dispersions in Early-Type Galaxies: Implications for Galaxy Ages and Metallicities, AJ, 129, 61 https://doi.org/10.1086/426336
  5. Bower, R. G., Benson, A. J., Malbon, R., Helly, J. C., Frenk, C. S., Baugh, C. M., Cole, S., & Lacey, C. G., 2006, Breaking the Hierarchy of Galaxy Formation, MNRAS, 370, 645 https://doi.org/10.1111/j.1365-2966.2006.10519.x
  6. Cardamone, C. N., et al., 2008, Mid-Infrared Properties and Color Selection for X-Ray-Detected Active Galactic Nuclei in the MUSYC Extended Chandra Deep Field-South, ApJ, 680, 130 https://doi.org/10.1086/587800
  7. Combes, F., 2006, Starbursts and AGN Fueling through Secular Evolution, Revista Mexicana de Astronomia y Astrofisica, vol. 26, 131–134
  8. Croton, D. J., et al., 2006, The Many Lives of Active Galactic Nuclei: Cooling Flows, Black Holes and the Luminosities and Colours of Galaxies, MNRAS, 365, 11 https://doi.org/10.1111/j.1365-2966.2005.09675.x
  9. Davies, R. I., Sanchez, F. M., Genzel, R., Tacconi, L. J., Hicks, E. K. S., Friedrich, S., & Sternberg, A., 2007, A Close Look at Star Formation around Active Galactic Nuclei, ApJ, 671, 1388 https://doi.org/10.1086/523032
  10. Dekel, A. & Birnboim, Y., 2006, Galaxy Bimodality due to Cold Flows and Shock Heating, MNRAS, 368, 2 https://doi.org/10.1111/j.1365-2966.2006.10145.x
  11. Donley, J. L., Rieke, G. H., P´erez-Gonzalez, P. G., Rigby, J. R., & Alonso-Herrero, A., 2007, Spitzer Power-Law Active Galactic Nucleus Candidates in the Chandra Deep Field-North, ApJ, 660, 167 https://doi.org/10.1086/512798
  12. Ferrarese, L. & Merritt, D., 2000, A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies, ApJ, 539, L9 https://doi.org/10.1086/312838
  13. Fiore, F., et al., 2009, Chasing Highly Obscured QSOs in the COSMOS Field, ApJ, 693, 447 https://doi.org/10.1088/0004-637X/693/1/447
  14. Gebhardt, K., et al., 2000, A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion, ApJ, 539, L13 https://doi.org/10.1086/312840
  15. Gezari, S., et al., 2006, Ultraviolet Detection of the Tidal Disruption of a Star by a Supermassive Black Hole, ApJ, 653, L25 https://doi.org/10.1086/509918
  16. Hasan, H., Pfenniger, D., & Norman, C., 1993, Galactic Bars with Central Mass Concentrations - Three-Dimensional Dynamics, ApJ, 409, 91 https://doi.org/10.1086/172644
  17. Heavens, A., Panter, B., Jimenez, R., & Dunlop, J., 2004, The Star-Formation History of The Universe from the Stellar Populations of Nearby Galaxies, Nature, 428, 625 https://doi.org/10.1038/nature02474
  18. Ho, L. C., 2008, Nuclear Activity in Nearby Galaxies, ARA&A, 46, 475 https://doi.org/10.1146/annurev.astro.45.051806.110546
  19. Jahnke, K. & Maccio, A., 2010, The Non-Causal Origin of the Black Hole-Galaxy Scaling Relations, arXiv:1006.0482
  20. Kauffmann, G. & Heckman, T. M., 2009, Feast and Famine: Regulation of Black Hole Growth in Low-Redshift Galaxies, MNRAS, 397, 135 https://doi.org/10.1111/j.1365-2966.2009.14960.x
  21. Kauffmann, G., et al., 2003, The Host Galaxies of Active Galactic Nuclei, MNRAS, 346, 1055 https://doi.org/10.1111/j.1365-2966.2003.07154.x
  22. Kewley, L. J., Groves, B., Kauffmann, G., & Heckman, T., 2006, The Host Galaxies and Classification of Active Galactic Nuclei, MNRAS, 372, 961 https://doi.org/10.1111/j.1365-2966.2006.10859.x
  23. Khochfar, S. & Ostriker, J. P., 2008, Adding Environmental Gas Physics to the Semianalytic Method for Galaxy Formation: Gravitational Heating, ApJ, 680, 54 https://doi.org/10.1086/587470
  24. Kormendy, J. & Kennicutt, Jr., R. C., 2004, Secular Evolution and the Formation of Pseudobulges in Disk Galaxies, ARA&A, 42, 603 https://doi.org/10.1146/annurev.astro.42.053102.134024
  25. Lacy, M., et al., 2004, Obscured and Unobscured Active Galactic Nuclei in the Spitzer Space Telescope First Look Survey, ApJS, 154, 166 https://doi.org/10.1086/422816
  26. Magorrian, J., et al., 1998, The Demography of Massive Dark Objects in Galaxy Centers, AJ, 115, 2285 https://doi.org/10.1086/300353
  27. Nelan, J. E., Smith, R. J., Hudson, M. J., Wegner, G. A., Lucey, J. R., Moore, S. A. W., Quinney, S. J., & Suntzeff, N. B., 2005, NOAO Fundamental Plane Survey. II. Age and Metallicity along the Red Sequence from Line-Strength Data, ApJ, 632, 137 https://doi.org/10.1086/431962
  28. Peng, C. Y., 2007, How Mergers May Affect the Mass Scaling Relation between Gravitationally Bound Systems, ApJ, 671, 1098 https://doi.org/10.1086/522774
  29. Perez-Gonzalez, P. G., et al., 2008, The Stellar Mass Assembly of Galaxies from z = 0 to z = 4: Analysis of a Sample Selected in the Rest-Frame Near-Infrared with Spitzer, ApJ, 675, 234 https://doi.org/10.1086/523690
  30. Revnivtsev, M. G., et al., 2004, Hard X-ray View of the Past Activity of Sgr $A{\ast}$ in a Natural Compton Mirror, A&A, 425, L49 https://doi.org/10.1051/0004-6361:200400064
  31. Richards, G. T., et al., 2006, The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3, AJ, 131, 2766 https://doi.org/10.1086/503559
  32. Ryan, Jr., R. E., et al., 2010, The Size Evolution of Passive Galaxies: Observations from the Wide Field Camera 3 Early Release Science Program, arXiv:1007.1460
  33. Sarzi, M., et al., 2010, The SAURON Project - XVI. On the Sources of Ionization for the Gas in Elliptical and Lenticular Galaxies, MNRAS, 402, 2187 https://doi.org/10.1111/j.1365-2966.2009.16039.x
  34. Schawinski, K., Dowlin, N., Thomas, D., Urry, C. M., & Edmondson, E., 2010a, The Role of Mergers in Early-Type Galaxy Evolution and Black Hole Growth, ApJ, 714, L108 https://doi.org/10.1088/2041-8205/714/1/L108
  35. Schawinski, K., Thomas, D., Sarzi, M., Maraston, C., Kaviraj, S., Joo, S., Yi, S. K., & Silk, J., 2007, Observational Evidence for AGN Feedback in Early-Type Galaxies, MNRAS, 382, 1415 https://doi.org/10.1111/j.1365-2966.2007.12487.x
  36. Schawinski, K., et al., 2010b, Galaxy Zoo: The Fundamentally Different Co-Evolution of Supermassive Black Holes and Their Early- and Late-Type Host Galaxies, ApJ, 711, 284 https://doi.org/10.1088/0004-637X/711/1/284
  37. Somerville, R. S., Hopkins, P. F., Cox, T. J., Robertson, B. E., & Hernquist, L., 2008, A Semi-Analytic Model for the Co-Evolution of Galaxies, Black Holes and Active Galactic Nuclei, MNRAS, 391, 481 https://doi.org/10.1111/j.1365-2966.2008.13805.x
  38. Stasinska, G., Vale Asari, N., Cid Fernandes, R., Gomes, J. M., Schlickmann, M., Mateus, A., Schoenell, W., & Sodre, Jr., L., 2008, Can Retired Galaxies Mimic Active Galaxies? Clues from the Sloan Digital Sky Survey, MNRAS, 391, L29
  39. Stern, D., et al., 2005, Mid-Infrared Selection of Active Galaxies, ApJ, 631, 163 https://doi.org/10.1086/432523
  40. Szomoru, D., et al., 2010, Confirmation of the Compactness of a z = 1.91 Quiescent Galaxy with Hubble Space Telescope's Wide Field Camera 3, ApJ, 714, L244 https://doi.org/10.1088/2041-8205/714/2/L244
  41. Thomas, D., Maraston, C., Bender, R., & Mendes de Oliveira, C., 2005, The Epochs of Early-Type Galaxy Formation as a Function of Environment, ApJ, 621, 673 https://doi.org/10.1086/426932
  42. Trager, S. C., Faber, S. M., Worthey, G., & Gonzalez, J. J., 2000, The Stellar Population Histories of Early-Type Galaxies. II. Controlling Parameters of the Stellar Populations, AJ, 120, 165 https://doi.org/10.1086/301442
  43. Treister, E., et al., 2009a, Heavily Obscured AGN in Star-Forming Galaxies at z - 2, ApJ, 706, 535 https://doi.org/10.1088/0004-637X/706/1/535
  44. Treister, E., Natarajan, P., Sanders, D. B., Urry, C. M., Schawinski, K., & Kartaltepe, J., 2010, Major Galaxy Mergers and the Growth of Supermassive Black Holes in Quasars, Science, 328, 600 https://doi.org/10.1126/science.1184246
  45. Treister, E., Urry, C. M., & Virani, S., 2009b, The Space Density of Compton-Thick Active Galactic Nucleus and the X-Ray Background, ApJ, 696, 110 https://doi.org/10.1088/0004-637X/696/1/110
  46. Tremaine, S., et al., 2002, The Slope of the Black Hole Mass versus Velocity Dispersion Correlation, ApJ, 574, 740 https://doi.org/10.1086/341002
  47. Tueller, J., Mushotzky, R. F., Barthelmy, S., Cannizzo, J. K., Gehrels, N., Markwardt, C. B., Skinner, G. K., & Winter, L. M., 2008, Swift BAT Survey of AGNs, ApJ, 681, 113 https://doi.org/10.1086/588458
  48. Ueda, Y., Akiyama, M., Ohta, K., & Miyaji, T., 2003, Cosmological Evolution of the Hard X-Ray Active Galactic Nucleus Luminosity Function and the Origin of the Hard X-Ray Background, ApJ, 598, 886 https://doi.org/10.1086/378940
  49. Urry, C. M. & Padovani, P., 1995, Unified Schemes for Radio-Loud Active Galactic Nuclei, PASP, 107, 803 https://doi.org/10.1086/133630
  50. Veilleux, S. & Osterbrock, D. E., 1987, Spectral Classification of Emission-Line Galaxies, ApJS, 63, 295 https://doi.org/10.1086/191166
  51. Windhorst, R. A., et al., 2010, The Hubble Space Telescope Wide Field Camera 3 Early Release Science Data: Panchromatic Faint Object Counts from 0.2-2 Microns Wavelength, arXiv:1005.2776
  52. York, D. G., et al., 2000, The Sloan Digital Sky Survey: Technical Summary, AJ, 120, 1579 https://doi.org/10.1086/301513