Investigating the Adoption of IPTV Services Influenced by Socio-cultural Factor, Flow Experience and Perceived Behavioral Control

사회문화적 요인과 플로우 경험 및 지각된 행위통제가 IPTV 서비스 수용에 미치는 영향 분석

  • 이봉규 (연세대학교 정보대학원) ;
  • 이성준 (연세대학교 방송통신정책연구센터(CPRC)) ;
  • 서현식 (연세대학교 방송통신정책연구센터(CPRC)) ;
  • 김준호 (방송통신위원회 중앙전파관리소)
  • Received : 2010.04.02
  • Accepted : 2010.05.19
  • Published : 2010.06.30

Abstract

The purpose of this study is to examine diverse factors influencing the adoption of IPTV services and relationships among them. To achieve the purpose, this study modified and applied the established theory of the Extended Technology Acceptance Model(ETAM) incorporating socio-cultural factor, flow experience and perceived behavioral control as related constructs. The suggested model was empirically tested through the structural equation modeling approach. The results are as follows: First, the socio-cultural factor and the perceived behavioral control have significant direct influences on the adoption of IPTV services. Second, the flow experience does not have a significant indirect influence mediated by the attitude toward IPTV services. Third, the socio-cultural factor has the significant relationships with the perceived usefulness and the perceived ease of use. Finally, the flow experience was influenced by the perceived usefulness and the perceived ease of use.

본 연구는 IPTV 서비스의 수용 행위에 영향을 미치는 요인들을 분석함과 동시에 각 요인들간의 관계를 파악하는데 그 목적을 두고 있다. 특히 사회문화적 요인, 플로우(flow) 경험 및 지각된 행위 통제가 IPTV 서비스 수용에 어떤 영향을 미치는 지를 확장된 기술수용모델(Extended Technology Acceptance Model, ETAM)을 기반으로 구조방정식을 통해 검증 하였다. 연구 결과 사회문화적 요인과 지각된 행위 통제는 직접적으로 서비스 수용에 영향을 미치는 중요 요인으로 판명되었다. 플로우 경험은 서비스 수용에 직접적인 영향을 주지는 않지만, 서비스 이용에 대한 인지적인 태도에 영향을 주어 간접적인 영향을 주는 것으로 나타났다. 또한 사회문화적 요인은 서비스의 인지된 유용성과 용이성에도 영향을 주는 것으로 나타났으며, 인지된 유용성과 용이성의 경우 플로우 경험에 영향을 주는 것으로 나타났다.

Keywords

Acknowledgement

Supported by : 방송통신위원회, 정보통신산업진흥원 방송통신정책연구센터

References

  1. Ovum. "IPTV Forecast 2007-2012", 2008
  2. 한국전자통신연구원. "미디어 융합과 IPTV 정책 및 시장 동향", 2008.
  3. 방송통신위원회. "방송통신융합과정책방향 및 IPTV 서비스 추진 현황", 2009.
  4. 윤승욱. "IPTV의 수용결정요인에 대한 연구", 언론과학연구, 제 9권, 1호, pp. 162-197, 2007.
  5. 이재신, 이민영. "확장된 기술수용모델을 이용한 IPTV의 수용의도에 영향을 미치는 요인들에 대한 연구", 방송과 커뮤니케이션, 제 7권, 1호, pp. 100-131, 2006.
  6. Kwon, H. Z., and Chon, B. S., "Social Influences on Terrestrial and Satellite Mobile-TV Adoption in Korea: Affiliation, Positive Self-Image, and Perceived Popularity", International Journal on Media Management, vol. 11, pp. 49-60, 2009.
  7. Taylor, S. T., and Todd, P. A., "Understanding Information Technology Usage: A Test of Competing Models", Information System Research, vol. 6, No. 2, pp. 144-176, 1995. https://doi.org/10.1287/isre.6.2.144
  8. Ajzen, I., "The Theory of Planned Behavior", Organizational Behavior and Human Decision Process, vol. 50, pp. 179-211, 1991. https://doi.org/10.1016/0749-5978(91)90020-T
  9. 강재원, 조창환. "인터넷 구매의도를 결정하는 요인들: 융합 Flow-TPB(Theory of Planned Behaviors) 모델", 언론과학연구, 제 6권, 1호, pp. 5-42, 2006.
  10. Trevino, L. K., and Webster, J., "Flow in Computer-mediated Communication", Communication Research, vol. 19, No. 5, pp. 539-573, 1992. https://doi.org/10.1177/009365092019005001
  11. Davis, F. D., "Perceived Usefulness. Easy of Use and the User Acceptance of Information Technology", MIS Quarterly, vol. 13, No. 3, pp. 319-340, 1989. https://doi.org/10.2307/249008
  12. Fishbein, M., and Ajzen, I., "Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research", Addition-Weseley Reading, 1975.
  13. Mathieson, K., "Predicting User Intentions: Comparing the Technology Acceptance Model with the Theory of Planned Behavior", Information System Research, vol. 2, No. 3, pp. 173-191, 1991. https://doi.org/10.1287/isre.2.3.173
  14. 강재원, 김은지. "대학생들의 동영상 UCC 이용에 관한 탐색적 연구", 한국언론학보, 제53권, 1호, pp. 187-208, 2009.
  15. 김광재. "DMB의 수용결정요인에 관한 연구", 한국방송학보, 제 53권, 3호, pp. 297-323, 2009.
  16. Malhotra, Y., and Galletta, D., "Extending the Technology Acceptance Model to Account for Social Influence: Theoretical Bases and Empirical Validation", Hawii International Conference on Systems Sciences, pp. 6-14.
  17. Venkatesh, V., and Davis, F. D., "A Theoretical Extention of Technological Acceptance Model: Four Longitudinal Field Study", Management Science, vol. 46, pp. 186-204, 2000. https://doi.org/10.1287/mnsc.46.2.186.11926
  18. Hsu, C. L., and Lu, H. P., "Why Do People Play On-Line Games? An Extended TAM with Social Influences and Flow Experience", Information and Management, vol. 41, pp. 853-868, 2003.
  19. Cialdini, R. B., and Goldstein, N. J., "Social Influence: Compliance and Conformity", The Annual Review of Psychology, vol. 55, pp. 591-621, 2004. https://doi.org/10.1146/annurev.psych.55.090902.142015
  20. Zhu, J., and He, Z., "Perceived Characteristics, Perceived Needs, and Perceived Popularity: Adoption and Use of the Internet in China", Communication Research, vol. 29, pp. 466-495, 2002. https://doi.org/10.1177/0093650202029004005
  21. Katz, M. L., and Shapiro, C., "Systems Competition and Network Effects", Journal of Economic Perspectives, vol. 8, No. 2, pp. 93-115, 1994. https://doi.org/10.1257/jep.8.2.93
  22. Moore, G. C., and Benbaset, I., "Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation", Information System Research, vol. 2, No. 3, pp. 192-222, 1991. https://doi.org/10.1287/isre.2.3.192
  23. Ling, R., and Yttri, B., "Hyper-coordination via Mobile Phone in Norway", In J. E. Katz and M. Aahhus (Eds.), "Perceptual Contact, Mobile Communication, Private Talk, Public Performance", pp. 139-169, Cambridge University Press, Cambridge, 2002.
  24. Leung, L., and Wei, R., "More than Just Talk on the Move: Uses and Gratifications of the Cellular Phone", Journalism and Mass Communication Quarterly, vol. 77, pp. 308-320, 2000. https://doi.org/10.1177/107769900007700206
  25. 양희동, 최인영. "사회적 영향이 정보 시스템 수용에 미치는 영향: 정보 기술 수용 모형 (Technology Acceptance Model)에서", 경영정보학연구, 2001.
  26. Ajzen, I., and Madden, T. J., "Prediction of Goal-Directed Behavior: Attitudes, Intention, and Perceived Behavioral Control", Journal of Experimental Social Psychology, vol. 22, pp. 453-474, 1986. https://doi.org/10.1016/0022-1031(86)90045-4
  27. 이재신, 김한나. "고등학생과 대학생들의 동영상 UCC 제작의도에 영향을 주는 요인에 관한 연구", 한국언론학보, 제 52권, 5호, pp. 400-419, 2008.
  28. Bandura, A., "Self-efficacy: Toward a Unifying Theory of Behavioral Change", Psychological Review, vol. 84, No. 2, pp. 191-215, 1977. https://doi.org/10.1037/0033-295X.84.2.191
  29. Compeau, D., and Higgins, C., "Computer Self-Efficacy: Development of a Measure and Initial Test", MIS Quarterly, vol. 19, pp. 189-211, 1995. https://doi.org/10.2307/249688
  30. Zhang, W., and Gutierrez, O. "Information Technology Acceptance in the Social Services Sector Context: An Exploration", Social Works, vol. 52, No. 3, pp. 221-231, 2007. https://doi.org/10.1093/sw/52.3.221
  31. Csikzentmihalyi, M. "Flow: The Psychology of Optimal Experience", Harper & Row, New York, 1990.
  32. Hoffman, D., and Novak, T., "A New Marketing Paradigm for Electronic Commerce", The Information Society, vol. 13, pp. 43-54, 1997. https://doi.org/10.1080/019722497129278
  33. Novak, T., Hoffman, D., and Yung, Y., "Measuring the Customer Experience in Online Environments: A Structural Modeling Approach", Marketing Science, vol. 19, No. 1, pp. 22-42, 2000. https://doi.org/10.1287/mksc.19.1.22.15184
  34. Agrawal, R., and Karahanna, E., "Times Flies when You're Having Fun: Cognitive Absorption and Beliefs about Information Technology Usage", MIS Quarterly, vol. 24, No. 4, pp. 665-694, 2000. https://doi.org/10.2307/3250951
  35. Retti, R., "An Exploration of Flow during Internet Use", Internet Research Electronic Networking Application and Policy, vol. 11, No. 2, pp. 103-113, 2001. https://doi.org/10.1108/10662240110695070
  36. 김성완. "전자교육공동체에서 지각된 유용성과 지각된 사용 용이성이 학습자의 몰입에 미치는 영향", 한국 컴퓨터정보학회 논문지, 제 11권, 6호, pp. 88-97, 2006.
  37. Anderson, J. C., and Gerbing, D. W., "Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach", Psychology Bulletin, vol. 103, No. 3, pp. 411-423, 1988. https://doi.org/10.1037/0033-2909.103.3.411
  38. Bagozzi, R., and Yi., "On the Evaluation of Structural Equation Models", Journal of the Academy of Marketing Science, vol. 16, No. 1, pp.74-94, 1988. https://doi.org/10.1007/BF02723327
  39. Deutsch, M., and Gerard, H. B., "A Study of Normative and Informational Social Influences upon Individual Judgement", Journal of Abnormal and Social Psychology, vol. 51, pp. 629-636, 1955. https://doi.org/10.1037/h0046408
  40. Browne, M., and Cudeck, R. "Alternative Ways of Assessing Model Fit". In K. A. Bollenk and J. S. Long (Eds.), "Testing Structural Equation Models", pp. 136-162. Sage, California, 1993.
  41. Nunally, J. C. "Psychometric Theory", McGrawHill, New York, 1978.
  42. Hu, L. and Bentler, P. M. "Cutoff Crieria for fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives", Structural Equation Modeling, vol. 6, No. 1, pp. 1-55, 1999. https://doi.org/10.1080/10705519909540118
  43. Tucker, L. R. and Lewis, C. "A Reliability Coefficient for Maximum Likelihood Factor Analysis", Psychometrika, vol. 38, pp. 1-10, 1973. https://doi.org/10.1007/BF02291170
  44. Scott, J. "The Measurement of Information System Effectiveness: Evaluating a Mass-Urining Instrument". Proceedings of the 15th International Conference on Information Systems, pp. 111-128, 1994
  45. Chau, P. Y. "An Empirical Investigation on Factors Affecting the Acceptance of Case by Systems Developers", Information and Management, vol. 30, pp. 269-280, 1996. https://doi.org/10.1016/S0378-7206(96)01074-9
  46. Fornell, C. and Larcker, D. F. "Evaluting Structural Equation Models with Unobservable Variables and Measurement Error", Journal of Marketing Research, vol. No. 1, pp. 39-50, 1981.