Effects of Fermented Diets Including Liquid By-products on Nutrient Digestibility and Nitrogen Balance in Growing Pigs

착즙부산물을 이용한 발효사료가 육성돈의 영양소 소화율 및 질소균형에 미치는 영향

  • Received : 2010.03.25
  • Accepted : 2010.05.12
  • Published : 2010.04.30

Abstract

This study was conducted to evaluate the effects of fermented diets including liquid by-products on nutrient digestibility and nitrogen balance in growing pigs. Treatments were 1) CON (basal diet), 2) F (fermented diet with basal diet), 3) KF (fermented diet with basal diet including 30% kale pomace), 4) AF (fermented diet with basal diet including 30% angelica keiskei pomace), 5) CF (fermented diet with basal diet including 30% carrot pomace) and 6) OF (fermented diet with basal diet including 30% grape pomace). A total of 24 pigs (41.74kg average initial body weight, Landrace $\times$ Yorkshire $\times$ Duroc), were assigned to 6 treatments, 4 replicates and 1 pig per metabolic cage in a randomized complete block (RCB) design. Pigs were housed in $0.5\times1.3m$ metabolic cage in a 17d digestibility trial. During the entire experimental period, Digestibility of dry matter (p<0.05) of treatment CON, F and CF were higher than other treatments. In crude protein digestibility, treatment F was higher than treatment AF and GF (p<0.05). Treatment GF showed the lowest digestibility of crude fiber among all treatments (p<0.05). In ether extract digestibility, treatment AF and CF showed higher than other treatments (p<0.05) except KF treatment. CF treatment showed the best digestibility of ash among all treatments (p<0.05). Whereas, For Ca and P digestibility, CF and OF treatments were improved than other treatments (p<0.05). Energy digestibility (p<0.05) of CON, F and CF treatments were higher than KF, AF and GF treatments. In total essential amino acid digestibility, F treatment was improved than AF, CF and GF treatments (p<0.05). In total non-essential amino acid digestibility, F treatment was higher than CON, AF and GF treatments (p<0.05). In total amino acid digestibility, F treatment was higher than AF and CF treatments (p<0.05) and GF treatment showed the lowest digestibility (p<0.05). In fecal nitrogen excretion ratio, GF treatment was greatest among all treatments (p<0.05) and F treatment was decreased than other treatments (p<0.05). In urinary nitrogen excretion ratio, CON and GF treatments showed the lowest among all treatments (p<0.05). In nitrogen retention ratio, CON treatment showed the high and KF treatment showed the lost among all treatments (p<0.05). Therefore, this experiment suggested that fermented diet could improve nutrient and amino acid digestibilities of growing pigs.

본 시험은 착즙부산물 발효사료가 육성돈의 영양소 소화율, 분뇨 배설량 그리고 질소 균형에 미치는 영향을 알아보고자 실시하였다. 삼원교잡종 24두(개시체중 46.79 kg)를 공시하여 10일간의 적응기를 거쳐 7 일간 대사 케이지 ($0.5{\times}1.3m$)에서 소화시험을 수행하였다. 처리구는 1) 기초사료 (CON), 2) 발효사료(기초사료를 발효한 사료, F), 3) 케일박 발효사료 (KF), 4) 신선초박 발효사료 (AF), 5) 당근박 발효사료 (CF) 빛 6) 포도박 발효사료(GF)로 하여 총 6개 처리이었으며 처리당 4반복으로 하였다. 시험기간 동안 건물 소화율은 대조구, F, CF 처려구가 다른 처리구들보다 유의적으로 높았다 (p<0.05). 조단백질소화율은 F 처리구가 AF 및 GF 처리구보다 유의적으로 높았고 (p<0.05), 조섬유 소화율은 GF 처리구가 다른 처리구들보다 유의적으로 낮았다 (p<0.05). 조지방 소화율에서는 AF 및 CF 처리구가 KF를 제외한 처리구들보다 유의적으로 높았다 (p<0.05). 조회분 소화율은 CF 처리구가 다른 처리구들보다 유의적으로 높았다 (p<0.05). 반면 칼숨과 인 소화율에서는 CF 및 GF 처리구가 다른 처리구들보다 유의적으로 높았다 (p<0.05). 에너지 소화율에서는 대조구, F 및 CF 처리구가 KF, AF 및 GF 처리구보다 유의적으로 높았다(p<0.05). 총 필수아미노산 소화율에서는 F 처리구가 AF, CF 및 GF 처리구보다 유의적으로 높았고(P<0.05), 비필수아미노산의 평균 소화율에서는 F 처리구가 AF, CF 및 GF 처리구보다 유의적으로 높았다 (p<0.05). 총 아미노산의 평균 소화율에서는 F 처리구가 AF 및 CF 처리구보다 높았으며 (p<0.05), GF 처리구가 가장 낮았다 (p<0.05). 분으로 배설된 질소 비율은 GF 처리구가 다른 처리구들보다 높았고(p<0.05), F 처리구가 낮았다 (p<0.05). 뇨로 배설된 질소 비율에서는 대조구와 GF 처리구가 다른 처리구들보다 유의적으로 낮았다(p<0.05). 질소 축적비율에서는 대조구가 가장 높았으며 (p<0.05), KF 처리구가 가장 낮았다 (p<0.05). 결론적으로 일반배합사료보다 착즙부산물 발효사료의 소화율이 감소하였는데 이것은 사료에 혼합된 착즙부산물 수준 30%가 높은 수준인 것으로 판단되어 추후 섬유소 수준을 낮추어 시험을 수행할 필요가 있다고 생각된다. 특히, 포도박 발효사료 처리구에서 분 배설량이 많은 이유는 포도박 발효사료의 섬유소 함량이 대조구 및 발효사료 보다 높고 다른 착즙부산물에 비하여 소화되지 않는 포도씨가 다량 배설되었기 때문인 것 같다.

Keywords

References

  1. AOAC. 1995. Official method of analysis. 16th Edition. Association of Official Analytical Chemists, Washington, D. C., USA.
  2. Canibe, N., N. Miquel, H. Miettinen and B. B. Jensen. 2001. Addition of formic acid or starter cultures to liquid feed. Effect on pH, micro flora composition, organic acid and ammonia concentration. 15th Forum for Applied Biotechnol.,Gent, Belgium. pp. 431-432.
  3. Cumby, T. R. 1986. Design requirements of liquid feeding systems for pigs: A review. J. Agric. Eng. Res. 34:153-172. https://doi.org/10.1016/S0021-8634(86)80015-4
  4. Dierick, N. A., Vervaeke, I. J., Demeyer, D. I. and Decuypere, J. A. 1989. Approach to the energetic importance of fibre digestion in pigs. I. Importance of fermentation in the overall energy supply. Animal Feed Science and Technology. 23:141-167. https://doi.org/10.1016/0377-8401(89)90095-3
  5. Dobrogosz, W. J. and Lindgren, S. E. 1994. Method of determining the presence of an antibiotic produced by Lactobacillus reuteri. US patent. 5, 352, 569.
  6. Duncan, D. B. 1955. Multiple range and multiple T tests. Biometrics. 11:1 Hong, T. T. T. and Lindberg, J. E. 2007. Effect of cooking and fermentation of a pig diet on gut environment and digestibility in growing pigs. Livestock Science. 109:135-137. https://doi.org/10.1016/j.livsci.2007.01.121
  7. Geary, T. M., P. H. Brooks, J. D. Beal, and A. Campbell. 1999. Effect onweaner pig performance and diet microbiology of feeding ali quid diet acidified to pH 4 with either lactic acid or through fermentation with Pediococcus acidilactici. J. Sci. Food Agric. 79:633-640. https://doi.org/10.1002/(SICI)1097-0010(19990315)79:4<633::AID-JSFA231>3.0.CO;2-L
  8. Hong, T. T. T. and Lindberg, J. E. 2007. Effect of cooking and fermentation of a pig diet on gut environment and digestibility in growing pigs. Livest. Sci. 109:135-137. https://doi.org/10.1016/j.livsci.2007.01.121
  9. Jensen, B. B. and L. L. Mikkelsen, 1998a. Feeding liquid diets to pigs. In: Gamsworthy P.C., Wiseman, J. (Eds.), Recent Advances in Animal Nutrition. Nottingham University Press, Loughborough, UK, pp. 107-126.
  10. Jensen, B. B. and L. L. Mikkelsen. 1998b. Feeding liquid diets to pigs. Recent Advances in Animal Nutrition. P. C. Garnsworthy and J. Wiseman, ed. Nottingham Univ. Press, Nottingham, U.K. pp. 107-26.
  11. Lawlor, P. G., P. B. Lynch, G. E. Gardiner, P. J. Caffrey and J. V. O'Doherty. 2002. Effect of liquid feeding weaned pigs on growth performance to harvest. J. Anim. Sci. 80:1725-1735. https://doi.org/10.2527/2002.8071725x
  12. Lindecrona, R. H., B. B. Jensen, T. K. Jensen, T. D. Leser, and K. Moler. 2000. The influence of diet on the development of swine dysentery. The 16th Int. Pig Vet. Soc. Cong., Melbourne, Australia. pp. 7.
  13. Low, A. G. and Rainbird, A. L. 1984. Effect of guar gum on nitrogen secretion into isolated loops of jejunum in conscious growing pigs. Br. J. Nutr. 52:499-505. https://doi.org/10.1079/BJN19840117
  14. Mayer, E. A. 1994. The physiology of gastric storage and emptying. In: Johnson, L. R., D. H., Alpers, J. Christensen, E. D. Jacobson, and J. H. Walsh. (Eds.), Physiology of the Gastrointestinal Tract, 3rd ed., vol. 1. Raven Press, New York. pp. 929-976.
  15. Mikkelsen, L. L. and Jensen, B. B., 1997. Effect of fermented liquid feed (FLF) on growth performance and microbial activity in the gastrointestinal tract of weaned piglets. In: Laplace, J. P., C. Fevrier, and A. Barbeau. (Eds.), Digestive Phyiology in Pigs. EAAP. publication No. 88, $26{\pm}28$ May. Saint Malo, France. pp. 639-642.
  16. Moran, C. A. 2001. Development and benefits of liquid diets for newly weaned pigs. Ph.D. Diss., Univ. of Plymouth, Plymouth, U.K.
  17. Morgan, C. A. and Whittemore, C. T. 1988. Dietary fibre and nitrogen excretion and retention by pIgs. Animal Feed Science and Technology. 19:185-189. https://doi.org/10.1016/0377-8401(88)90066-1
  18. NRC. 1998. Nutrient requirement of pigs. 10th Edition. National Research council, Academy Press. Washington, D. C., USA
  19. Russell, P. J., T. M. Geary, P. H. Brooks, and A. Campbell. 1996. Performance, water use and effluent output of weaner pigs fed ad libitum with either dry pellets or liquid feed and the role of microbial activity in the liquid feed. J. Sci. Food Agric. 72:8-16 https://doi.org/10.1002/(SICI)1097-0010(199609)72:1<8::AID-JSFA646>3.0.CO;2-K
  20. SAS. 1996. SAS user's guide. Release 6.12 edition. SAS Institute. Inc., Cary, NC.
  21. Sauer, W. C., Mosenthin, R., Ahrens, F. and den Hartog, L. A. 1991. The effect of source of fiber on ileal and fecal amino acid digestibility and bacterial nitrogen excretion in growing pigs. J. Anim. Sci. 69:4070-4077. https://doi.org/10.2527/1991.69104070x
  22. Sauer, W. C., Mosenthin, R., Ahrens, F. and den Hartog, L. A. 1991. The effect of source of fiber on ileal and fecal amino acid digestibility and bacterial nitrogen excretion in growing pigs. J. Anim. Sci. 69: 4070-4077.
  23. Scholten, R. 2001. Fermentation of liquid diets for pigs. Ph.D. Diss., Wageningen Univ., Wageningen, The Netherlands.
  24. Scholten, R. H. J., C. M. C. van der Peet-Schwering, M. W. A. Verstegen, L. A. den Hartog, J. W. Schrama, and P. C. Vesseur. 1999. Fermented co-products and fermented compound diets for pigs: a review. Animal Feed Science and Technology, 82:1-19. https://doi.org/10.1016/S0377-8401(99)00096-6
  25. Scholten, R., and N. Verdoes. 1997. The Dutch benefit from a recycling role. Pigs. 13-2, pp. 16-17.
  26. Scholten, R., C. M. C. van der Peet-Schwering, L. A. den Hartog, J. W. Schrama, and M. W. A. Verstegen. 2002. Fermented wheat in liquid diets: effects on gastrointestial characteristics in weanling piglets. J. Anim. Sci. 80:1179-1186. https://doi.org/10.2527/2002.8051179x
  27. Smiricky-Tjardes, M. R., E. A. Flickinger, C. M. Grieshop, L. L. Bauer, M. R. Murphy and G. C. Fahey, Jr. 2003. In vitro fermentation characteristics of selected oligosaccharides by swine fecal microflora. J. Anim. Sci. 81:2505-2514. https://doi.org/10.2527/2003.81102505x
  28. Taylor, W. H. 1959. Studies on gastric proteolysis. Biochem. J. 71: 627-632.
  29. Taylor, W. H. 1962. Proteinases of the stomach in health and disease. Physiol. Rev. 42: 519-553. https://doi.org/10.1152/physrev.1962.42.4.519
  30. Varel, V. H. 1987. Activity of fiber degrading microorganisms in the pig large intestine. J. Anim. Sci. 65:488-496. https://doi.org/10.2527/jas1987.652488x
  31. Varel, V. H., Pond, W. G. and Yen, J. T. 1984. Influence of dietary fiber on the performance and cellulase activity of growing-finishing swine. J. Anim. Sci. 59:388-393. https://doi.org/10.2527/jas1984.592388x
  32. Wilfart, A., Montagne, L. Simmins, H, Noblet, J. and van Milgen, J. 2007. Effect of fibre content in the diet on the mean retention time in differentsegments of the digestive tract in growing pigs. Livestock Science. 109:27-29. https://doi.org/10.1016/j.livsci.2007.01.032
  33. Yang, S. Y., Ji, K, S, Baik, Y, H, Kwak, W. S. and McCaskey, T. A. 2006. Lactic acid fermentation of food waste for swine feed. Bioresource Technology. 97:1858-1864. https://doi.org/10.1016/j.biortech.2005.08.020
  34. Zebrowska, T., Low, A. G. and Zebrowska, H. 1983. Studies on gastric digestion of protein and carbohydrate, gastric secretion and exocrine pancreatic secretion in the growing pig. Br. J. Nutr. 49:401-410.
  35. Zervas, S. and ZijI stra, R. T. 2002. Effects of dietary protein and fermentable fiber on nitrogen excretion patterns and plasma urea in grower pigs. J. Anim. Sci. 80:3247- 3256. https://doi.org/10.2527/2002.80123247x
  36. 김인배, 한인규, 최윤재, 민태선. 1992. 회장 Cannula를 설치한 돼지에서 섬유소의 종류와 수준이 다른 무단백질 사료가 내생 질소 배설에 미치는 영향에 관한 연구. 한국동물자원과학회지. 16(5):275-282