A Study on Livestock Odor Reduction Using Water Washing System

수세탈취시스템을 이용한 축산악취저감에 관한 연구

  • 전경호 (농촌진흥청 국립축산과학원) ;
  • 최동윤 (농촌진흥청 국립축산과학원) ;
  • 송준익 (농촌진흥청 국립축산과학원) ;
  • 박규현 (농촌진흥청 국립축산과학원) ;
  • 김재환 (농촌진흥청 국립축산과학원) ;
  • 곽정훈 (농촌진흥청 국립축산과학원) ;
  • 강희설 (농촌진흥청 국립축산과학원) ;
  • 정종원 (농업기술실용화재단)
  • Received : 2010.03.10
  • Accepted : 2010.04.05
  • Published : 2010.04.30

Abstract

The odor problem in the livestock is increasing by 7% annually. Most importantly, the livestock odor problem in swinery accounts for the maximum ratio (54%). In this study, we reviewed the possibility of deodorizing swinery using an odor reduction device that can be used with the water washing system. First, the study confirmed that the solubility of odor gas, which was hydrogen sulfide, was very low regardless of the contact time with solvent, but the solubility of methyl mercaptan was found to increase along with the increase in time. The solubility of other odor gases, such as dimethyl sulfide, dimethyl disulfide and ammonia, was considerably high. Consequently, it is considered that if the odor reduction device for the water washing system deodorization is used in a swinery, the time during which the exhaust gas is in contact with usable water must be extended, or solvent quantity must be expanded. However, it is predicted that although hydrogen sulfide is easily generated in the anaerobic condition, it is difficult to expect high odor reduction efficiency because this gas has low solubility in water, especially in case it is used in the deodorization of the water washing system. The result of the solubility experiment using the bench-scale device practically manufactured represented the higher odor reduction ratio than expected. This result was possible because the removal efficiency of dust particles could be reached up to 93%. Therefore, it is judged that also the odor gas absorbed on dust particles could be removed by removal of dust. Consequently, it is expected that the higher order reduction ratio will be possible by structural improvement for increasing contact with water and odor gas.

수세탈취식을 이용한 축산악취저감에 관한 연구를 수행한 결과 다음과 같은 결과를 얻을 수 있었다. 개발된 용해도 측정장치를 이용하여 악취가스의 용해특성을 조사한 결과, 황화수소의 경우에는 용매와의 접촉 시간과 관계없이 매우 낮은 것을 알 수 있었다. 이에 비해, 메틸메르캅탄의 경우에는 물과의 접촉시간을 증가시킴에 따라 용해도도 함께 증가하는 것을 알 수 있었다. 이밖에 다른 황화합물인 디메틸설파이드, 디메탈디설파이드, 암모니아의 경우에는 매우 용해도가 높은 특성을 가지고 있었다. 따라서, 축사의 측벽에 수세탈취식 악취저감장치를 부착하여 사용할 경우에는 가능한 물과 환기가스의 접촉시간을 길게 유지시켜 주는 것이 악취저감성능을 향상 시킬 수 있는 것을 알 수 있었다. 그러나, 혐기성 상태에서 발생하기 쉬운 황화수소와 같은 경우에는 수세탈취식을 이용할 경우, 가스의 물에 대한 용해도가 낮기 때문에 높은 악취저감 효율을 기대하기는 어려울 것을 예측할 수 있었다. 그러나, 실제 벤치스케일을 제작하여 실험한 결과 포든 가스에서 용해도 측정실험보다 높은 저감효과를 얻을 수 있었다. 또한, 수세탈취 시스템에서의 분진 저감율이 93%으로 나타나, 악취저감 효과뿐만 아니라 분진발생량도 크게 줄일수 있는 것으로 나타났다.

Keywords

References

  1. Asao Oya, Wang Goi Iu, 2002, Deodorization performance of charcoal particles loaded with orthophosphoric acid against ammonia and trimethylamine, Carbon, 40. 1391-1399. https://doi.org/10.1016/S0008-6223(01)00273-1
  2. Brian mills, 1994, Review of methods of odour control, odour control methods, 147- 152.
  3. Delhomenie, M. C., Bibeau, L., Gendron, J., Brzezinski, R., Heitz, M., 2001a. Air treatment by biofiltration: influence of nitrogen concentration on operational parameters. Industrial Engineering Chemistry Research 40, 5405-5414. https://doi.org/10.1021/ie0011270
  4. Delhomenie, M.C., Bibeau, L., Gendron, J., Brzezinski, R., Heitz, M., 2001b. Influence of nitrogen on the degradation of toluene in a compost-based biofilter. Journal of Chemical Technology and Biotechnology 76, 997-1006. https://doi.org/10.1002/jctb.472
  5. Schauberger, G., M. Piringer and E. Petz, 2006, Odour episodes in the vicinity of livestock buildings: A qualitative comparison of odour complaint statistics with model calculations, Agriculture, Ecosystems and Environment 114, 185-194. https://doi.org/10.1016/j.agee.2005.10.007
  6. Luo, J., S. Lindsey, 2006. The use of pine bark and natural zeolite as biofilter media to remove animal rendering process odours, Bioresource Technology, 97. 1461-1469. https://doi.org/10.1016/j.biortech.2005.07.011
  7. Schlegelmilch, M., J. Streese and W. Biedermann, 2005, Odour control at biowaste composting facilities, Waste Management, 25, 917- 927. https://doi.org/10.1016/j.wasman.2005.07.011
  8. Ottengraf, S.P.P., 1987. Biological systems for waste gas elimination. Trends in Biotechnology 5, 132-136. https://doi.org/10.1016/0167-7799(87)90007-2
  9. Schirz S., 1977, Odour removal from the exhaust air of animal shelters, Agriculture and Environment, 3, 223-228. https://doi.org/10.1016/0304-1131(77)90015-7
  10. Shareefdeen, Z. and singh, A., 2005, Biotechnology for odor and air pollution control, Springer.
  11. Song, J. and Kinney, K. A. 2000, Effect of Vapor-Phase Bioreactor Operation on Biomass Accumulation, Distribution, and Activity, Biotechnol. Bioeng., 68, 508-516. https://doi.org/10.1002/(SICI)1097-0290(20000605)68:5<508::AID-BIT4>3.0.CO;2-P
  12. Van Groenestijin, J. W. and hesselink, P. G. M., 1993, Biotechniques for air pollution control, Biodegradation, 4, 283-301. https://doi.org/10.1007/BF00695975
  13. 국립환경과학원, 2005, 악취공정시험법
  14. 농촌진흥청, 2009, 가축분뇨 발생량 및 주요성분 재설정
  15. 송지헌, 2006, 미생물반응기를 이용한 악취 및 휘발성유기화합물 저감기술의 적용사례 및 발전방향, 대한환경공학회지, 1118-1125.
  16. 이민수, 윤오섭, 송영우, 2009, 점토광물을 이용한 황화수소 제거, 한국폐기물학회지, 26. 4. 351-357.
  17. 환경부, 2007, 악취민원실태분석.