DOI QR코드

DOI QR Code

복합재료 구조 요소의 탄성문제에 대한 해

Solution to Elasticity Problems of Structural Elements of Composite Materials

  • Afsar, A.M. (Dept of Mechanical Engineering, CNU, Bangladesh University of Engineering and Technology) ;
  • Huq, N.M.L. (Dept of Mechanical Engineering, Dhaka University of Engineering and Technology) ;
  • Mirza, F.A. ;
  • Song, J.I. (Dept. of mechanical Engineering, Changwon National University)
  • 발행 : 2010.06.30

초록

본 연구는 일반적인 적층 복합재료의 구조요소에서 탄성영역에 대한 해석적 해에 대한 방법을 나타낸 것이다. 혼합된 경계조건 하에서 2차원 평면응력탄성문제는 변위포텐셜함수라 불리는 단일미지함수로 표현된 1/4 부분미분방정식의 해로 축소시켰으며, 응력과 변위의 모든 성분은 어떠한 경계조건에도 적합한 방법을 만드는 동일한 변위포텐셜항으로 표현하였다. 이 방법은 각도를 가진 적층판과 90도 적층판으로 각각 구성된 구조요소의 두 가지 특별문제에 대해서 해석적인 해를 얻는데 적용된다. 본 연구에서 나타낸 몇 가지 수치적인 결과는 두 가지로 적층된 유리섬유복합재료에 관한 것이다. 연구결과는 지지된 하중의 임계영역에서 모든 경계조건이 정확히 만족되어 크게 신뢰할 만한 결과를 나타내었다. 이는 혼합된 어떠한 경계조건하에서도 복합재료의 구조요소에서 탄성영역에 대한 정확한 해석적 해를 얻는 데 적용시킬 수 있을 뿐 아니라 단순한 문제를 해결하는 데도 신뢰할 만한 결과를 얻을 수 있음을 입증한 것이다.

The present study describes a method for analytical solution to elastic field in structural elements of general symmetric laminated composite materials. The two dimensional plane stress elasticity problems under mixed boundary conditions are reduced to the solution of a single fourth order partial differential equation, expressed in terms of a single unknown function, called displacement potential function. In addition, all the components of stress and displacement are expressed in terms of the same displacement potential function, which makes the method suitable for any boundary conditions. The method is applied to obtain analytical solutions to two particular problems of structural elements consisting of an angle-ply laminate and a cross-ply laminate, respectively. Some numerical results are presented for both the problems with reference to the glass/epoxy composite. The results are highly accurate and reliable as all the boundary conditions including those in the critical regions of supports and loads are satisfied exactly. This verifies the method as a simple and reliable one as well as capable to obtain exact analytical solution to elastic field in structural elements of composite materials under mixed and any other boundary conditions.

키워드

참고문헌

  1. Timoshenko S. and Goodier V.N., Theory of Elasticity, McGraw- Hill, New York, 1979.
  2. Uddin M.W., Finite Difference Solution of Two-dimensional Elastic Problems with Mixed Boundary Conditions, M. Sc. Thesis, Carleton University, Canada, 1966.
  3. Idris A.B.M., Ahmed S.R., and Uddin M.W., "Analytical Solution of a 2-D Elastic Problem with Mixed Boundary Conditions," Journal - The Institution of Engineers (Singapore), Vol. 36, No. 6, 1996, pp. 11-17.
  4. Ahmed S.R., Khan M.R., Islam K.M.S., and Uddin M.W., "Analysis of Stresses in Deep Beams using Displacement Potential Function," Journal of the lnstitution of Engineers (India), Vol. 77, 1996, pp. 141-147.
  5. Akanda M.A.S., Ahmed S.R., Khan M.R., and Uddin, M.W., "A Finite Difference Scheme for Mixed Boundary Value Problems of Arbitrary-Shaped Elastic Bodies," Advances in Engineering Software, Vol. 31, No. 3, 2000, pp. 173-184. https://doi.org/10.1016/S0965-9978(99)00035-6
  6. Nath S.K.D., Afsar A.M., and Ahmed S.R., "Displacement Potential Approach to the Solution of Stiffened Orthotropic Composite Panels Under Uniaxial Tensile Load," Journal of Aerospace Engineering, Part G, Vol. 221 , 2007, pp.869-881. https://doi.org/10.1243/09544100JAERO153
  7. Nath S.K.D., Afsar A.M., and Ahmed S.R., "Displacement Potential Solution of a Deep Stiffened Cantilever Beam of Orthotropic Composite Material," Journal of Strain Analysis, Vol. 42, 2007, pp. 529-541. https://doi.org/10.1243/03093247JSA266
  8. Nath S.K.D. and Afsar A.M., "Analysis of the Effect of Fiber Orientation on the Elastic Field in a Stiffened Orthotropic Panel under Uniform Tension using Displacement Potential Approach," Mechanics of advanced Materials and Structures, Vol. 16, 2009, pp. 300-307. https://doi.org/10.1080/15376490802664281
  9. Afsar A.M. Nath S.K.D., Ahmed S.R., and Song J.I., "Displacement Potential Based Finite Difference Solution to Elastic Field in a Cantilever Beam of Orthotropic Composite," Mechanics of Advanced Materials and Structures, Vol. 15, 2008, pp. 386-399. https://doi.org/10.1080/15376490801977791
  10. Huq N.M.L., Analysis of Elastic Field in Structural Elements of Laminated Composites by Displacement Potential Approach, M.Sc. Dissertation, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, 2007.
  11. Afsar A.M., Huq, N.M. L., and Song J.I., "Analytical Solution to a Mixed Boundary Value Elastic Problem of a Roller Guided Panel of Laminated Composite," Archive of Applied Mathematics, DOI 10.1007/s00419-009-0324-z.
  12. Kao A.K., Mechanics of Composite Materials. Taylor and Francis. New York. 2006.
  13. Jones R.M., Mechanics of Composite Materials, 1st ed., Scripta Book Company, Washington, D.C., 1975.