DOI QR코드

DOI QR Code

Morinda citrifolia Inhibits Both Cytosolic $Ca^{2+}$-dependent Phospholipase $A_2$ and Secretory $Ca^{2+}$-dependent Phospholipase $A_2$

  • Song, Ho-Sun (Department of Pathophysiology, College of Pharmacy, Chung-Ang University) ;
  • Park, Sung-Hun (Department of Pathophysiology, College of Pharmacy, Chung-Ang University) ;
  • Ko, Myoung-Soo (Department of Pathophysiology, College of Pharmacy, Chung-Ang University) ;
  • Jeong, Jae-Min (Department of Pathophysiology, College of Pharmacy, Chung-Ang University) ;
  • Sohn, Uy-Dong (Department of Pharmacology, College of Pharmacy, Chung-Ang University) ;
  • Sim, Sang-Soo (Department of Pathophysiology, College of Pharmacy, Chung-Ang University)
  • Received : 2010.05.07
  • Accepted : 2010.06.18
  • Published : 2010.06.30

Abstract

This study investigated the effects of the methanol extracts of Morinda citrifolia containing numerous anthraquinone and iridoid on phospholipase $A_2$ ($PLA_2$) isozyme. $PLA_2$ activity was measured using various $PLA_2$ substrates, including 10-pyrene phosphatidylcholine, 1-palmitoyl-2-[$^{14}C$]arachidonyl phosphatidylcholine ([$^{14}C$]AA-PC), and [$^3H$]arachidonic acid (AA). The methanol extracts suppressed melittin-induced [$_3H$]AA release in a concentration-dependent manner in RAW 264.7 cells, and inhibited $cPLA_2/sPLA_2$-induced hydrolysis of [$^{14}C$]AA-PC in a concentration- and time-dependent manner. A Dixon plot showed that the inhibition by methanol extracts on $cPLA_2$ and $sPLA_2$ appeared to be competitive with inhibition constants ($K_i$) of $3.7{\mu}g/ml$ and $12.6{\mu}g/ml$, respectively. These data suggest that methanol extracts of Morinda citrifolia inhibits both $Ca^{2+}$-dependent $PLA_2$ such as, $cPLA_2$ and $sPLA_2$. Therefore, Morinda citrifolia may possess anti-inflammatory activity secondary to $Ca^{2+}$-dependent $PLA_2$ inhibition.

Keywords

References

  1. Dennis EA. Diversity of group types, regulation, and function of phospholipase $A_{2}$. J Biol Chem. 1994;269:13057-13060.
  2. Kudo I, Murakami M. Phospholipase $A_{2}$ enzymes. Prostaglandins Other Lipid Mediat. 2002;68-69:3-58. https://doi.org/10.1016/S0090-6980(02)00020-5
  3. 3. Murakami M, Shimbara S, Kambe T, Kuwata H, Winstead MV, Tischfield JA, Kudo I. The functions of five distinct mammalian phospholipase $A_{2}s$ in regulating arachidonic acid release. Type IIa and type V secretory phospholipase $A_{2}s$ are functionally redundant and act in concert with cytosolic phospholipase $A_{2}$. J Biol Chem. 1998;273:14411-14423. https://doi.org/10.1074/jbc.273.23.14411
  4. Balsinde J, Balboa MA, Insel PA, Dennis EA. Regulation and inhibition of phospholipase $A_{2}$. Annu Rev Pharmacol Toxicol. 1999;39:175-189. https://doi.org/10.1146/annurev.pharmtox.39.1.175
  5. Balsinde J, Dennis EA. Function and inhibition of intracellular calcium-independent phospholipase $A_{2}$. J Biol Chem. 1997;272:16069-16072. https://doi.org/10.1074/jbc.272.26.16069
  6. Potterat O, Hamburger M. Morinda citrifolia (Noni) fruit--phytochemistry, pharmacology, safety. Planta Med. 2007;73:191-199. https://doi.org/10.1055/s-2007-967115
  7. Soloman N. The tropical fruit with 101 medicinal uses, NONI juice. Woodland Publishing; 1999.
  8. Kamiya K, Tanaka Y, Endang H, Umar M, Satake T. New anthraquinone and iridoid from the fruits of Morinda citrifolia. Chem Pharm Bull (Tokyo). 2005;53:1597-1599. https://doi.org/10.1248/cpb.53.1597
  9. Balboa MA, Balsinde J, Johnson CA, Dennis EA. Regulation of arachidonic acid mobilization in lipopolysaccharide-activated P388D(1) macrophages by adenosine triphosphate. J Biol Chem. 1999;274:36764-36768. https://doi.org/10.1074/jbc.274.51.36764
  10. Radvanyi Fi, Jordan L, Russo-Marie Fi, Bon C. A sensitive and continuous fluorometric assay for phospholipase $A_{2}$ using pyrene-labeled phospholipids in the presence of serum albumin. Anal Biochem. 1989;177:103-109. https://doi.org/10.1016/0003-2697(89)90022-5
  11. Wichmann O, Gelb MH, Schultz C. Probing phospholipase $A_{2}$ with fluorescent phospholipid substrates. Chembiochem. 2007;8:1555-1569. https://doi.org/10.1002/cbic.200600462
  12. Martinez J, Moreno JJ. Role of $Ca^{2+}$-Independent phospholipase $A_{2}$ on arachidonic acid release Induced by reactive oxygen species. Arch Biochem Biophys. 2001;392:257-262. https://doi.org/10.1006/abbi.2001.2439
  13. Ackermann EJ, Conde-Frieboes K, Dennis EA. Inhibition of macrophage $Ca^{2+}$-independent phospholipase $A_{2}$ by bromoenol lactone and trifluoromethyl ketones. J Biol Chem. 1995;270:445-450. https://doi.org/10.1074/jbc.270.1.445
  14. Fonteh AN, Bass DA, Marshall LA, Seeds M, Samet JM, Chilton FH. Evidence that secretory phospholipase $A_{2}$ plays a role in arachidonic acid release and eicosanoid biosynthesis by mast cells. J Immunol. 1994;152:5438-5446.
  15. Riendeau D, Guay J, Weech PK, Laliberte F, Yergey J, Li C, Desmarais S, Perrier H, Liu S, Nicoll-Griffith D, Street IP. Arachidonyl trifluoromethyl ketone, a potent inhibitor of 85-kDa phospholipase $A_{2}$, blocks production of arachidonate and 12-hydroxyeicosatetraenoic acid by calcium ionophore-challenged platelets. J Biol Chem. 1994;269:15619-15624.
  16. Dole VP, Meinertz H. Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem. 1960;235:2595-2599.
  17. Song HS, Kim HR, Kim MC, Hwang YH, Sim SS. Lutein is a Competitive Inhibitor of Cytosolic $Ca^{2+}$-dependent Phospholipase $A_{2}$. J Pharm Pharmacol. 2010;62:221-227.
  18. Lusa S, Myllarniemi M, Volmonen K, Vauhkonen M, Somerharju P. Degradation of pyrene-labelled phospholipids by lysosomal phospholipases in vitro. Dependence of degradation on the length and position of the labelled and unlabelled acyl chains. Biochem J. 1996;315:947-952. https://doi.org/10.1042/bj3150947
  19. Nielsen OH, Bouchelouche PN, Berild D. Arachidonic acid and calcium metabolism in rnelittin stimulated neutrophils. Mediators Inflamm. 1992;1:313-317. https://doi.org/10.1155/S0962935192000462
  20. Lio YC, Reynolds LJ, Balsinde J, Dennis EA. Irreversible inhibition of $Ca^{2+}$-independent phospholipase $A_{2}$ by methyl arachidonyl fluorophosphonate. Biochim Biophys Acta. 1996;1302:55-60. https://doi.org/10.1016/0005-2760(96)00002-1
  21. Bartoli F, Lin HK, Ghomashchi F, Gelb MH, Jain MK, Apitz-Castro R. Tight binding inhibitors of 85-kDa phospholipase $A_{2}$but not 14-kDa phospholipase $A_{2}$ inhibit release of free arachidonate in thrombin-stimulated human platelets. J Biol Chem. 1994;269:15625-15630.
  22. Street IP, Lin HK, Laliberte F, Ghomashchi F, Wang Z, Perrier H, Tremblay NM, Huang Z, Weech PK, Gelb MH. Slow- and tight-binding inhibitors of the 85-kDa human phospholipase $A_{2}$. Biochemistry. 1993;32:5935-5940. https://doi.org/10.1021/bi00074a003
  23. 23. McKoy ML, Thomas EA, Simon OR. Preliminary investigation of the anti-inflammatory properties of an aqueous extract from Morinda citrifolia (noni). Proc West Pharmacol Soc. 2002;45:76-78.
  24. Li RW, Myers SP, Leach DN, Lin GD, Leach G. A cross-cultural study: anti-inflammatory activity of Australian and Chinese plants. J Ethnopharmacol. 2003;85:25-32. https://doi.org/10.1016/S0378-8741(02)00336-7

Cited by

  1. Effect of Extremely Low Frequency Electromagnetic Fields (EMF) on Phospholipase Activity in the Cultured Cells vol.14, pp.6, 2010, https://doi.org/10.4196/kjpp.2010.14.6.427
  2. Antiulcerogenic effect of melittin via mitigating TLR4/TRAF6 mediated NF-κB and p38MAPK pathways in acetic acid-induced ulcerative colitis in mice vol.331, pp.None, 2010, https://doi.org/10.1016/j.cbi.2020.109276