Symmetric Shape Deformation Considering Facial Features and Attractiveness Improvement

얼굴 특징을 고려한 대칭적인 형상 변형과 호감도 향상

  • Kim, Jeong-Sik (Dept. of Computer Science and Engineering, Sejong University) ;
  • Shin, Il-Kyu (Dept. of Computer Science and Engineering, Sejong University) ;
  • Choi, Soo-Mi (Dept. of Computer Science and Engineering, Sejong University)
  • Received : 2010.03.19
  • Accepted : 2010.06.05
  • Published : 2010.06.06

Abstract

In this paper, we present a novel deformation method for alleviating the asymmetry of a scanned 3D face considering facial features. To handle detailed areas of the face, we developed a new local 3D shape descriptor based on facial features and surface curvatures. Our shape descriptor can improve the accuracy when deforming a 3D face toward a symmetric configuration, because it provides accurate point pairing with respect to the plane of symmetry. In addition, we use point-based representation over all stages of symmetrization, which makes it much easier to support discrete processes. Finally, we performed a statistical analysis to assess subjects' preference for the symmetrized faces by our approach.

본 논문에서는 얼굴의 3차원 스캔 데이터로부터 특징을 고려하여 비대칭적인 요소를 완화시키는 대칭적 변형 기법을 제안한다. 이를 위해 얼굴의 전체 윤곽뿐만 아니라 세밀한 영역까지 다룰 수 있는 얼굴의 특징점과 표면 곡률에 기초한 새로운 3차원 형상 기술자(shape descriptor)를 개발하였다. 개발된 형상 기술자는 이상적인 대칭 평면을 정의하여 정확한 대칭쌍 정점을 결정할 수 있기 때문에, 보다 정교하게 3차원 얼굴의 대칭성을 향상 시킬 수 있다. 또한 변형을 위한 모든 단계에서 처리를 쉽게 하도록 포인트 기반 표현법을 사용하였다. 마지막으로 제안한 대칭적 변형 기법을 통해 얼굴의 비대칭성을 감소시킴으로써 얼굴에 대한 호감도를 향상시킬 수 있다는 것을 통계적으로 검증하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. DW, Zaidel. SM, Aarde. K. Baig. "Appearance of symmetry, beauty, and health in human faces." Brain and Cognition, 57, 3, 261-263, 2005. https://doi.org/10.1016/j.bandc.2004.08.056
  2. J, Podolak. P, Shilane. A, Golovinskiy. S, Rusinkiewicz. T. Funkhouser. "A planar-reflective symmetry transform for 3d shapes." ACM Transactions on Graphics, 25, 3, 549-559, 2006. https://doi.org/10.1145/1141911.1141923
  3. N. J. Mitra. L. J. Guibas, and M. Pauly. "Partial and approximate symmetry detection for 3d geometry", ACM Trans. Graph, Vol. 25, No.3, pp. 560-568. 2006. https://doi.org/10.1145/1141911.1141924
  4. J, Wolter. T. Woo, and R. Volz. "Optimal algorithms symmetry detection in two and three dimensions." The Visual Computer, pp. 37-48. 1985.
  5. Alt H., Mehlhorn K., Wagener H., and Welzl E., "Congruence, similarity and symmetries of geometric objects", Discrete Comput. Geom, Vol. 3, pp. 237-256, 1988. https://doi.org/10.1007/BF02187910
  6. Zabrodsky H., Peleg S., and Avnir D., "Symmetry as a continuous feature", IEEE PAMl, Vol. 17, 1995.
  7. Zabrodsky H., and Weinshall D., "Using bilateral symmetry to improve 3D reconstruction from image sequences", Computer Vision and Image Understanding: CVIU 67, Vol. 1, pp. 48-57, 1997.
  8. C. Sun. and J. Sherrah. "3d symmetry detection using the extended gaussian image." IEEE PAMI, Vol. 19. 1997.
  9. M. Kazhdan. B. Chazelle. D. P. Dobkin. A. Finkelstein and T. A. Funkhouser. "A reflective symmetry descriptor", In Proceedings of ECCV, pp. 642-656. 2002.
  10. M. Kazhdan. T. Funkhouser. and S. Rusinkiewicz. "Symmetry descriptors and 3d shape matching", In Symposium on Geometry Processing, pp. 116-125. 2002.
  11. S. Rusinkiewicz. "Estimating curvatures and their derivatives on triangle meshes." In Proceeding of the 3D Data Processing. Visualization, and Transmission, 2nd Intemational Symposium, pp. 486-493. 2004.
  12. N. J, Mitra. L, Guibas. M. Pauly. "Symmetrization." AGM Transactions on Graphics, 26, 3, 1-8, 2007. https://doi.org/10.1145/1276377.1276379
  13. G, Taubin. T, Zhang. G. Golub. "Optimal surface smoothing as filter design." Fourth European Conference on Computer Vision (ECCV'96) and IBM Technical Report RC-20404, 1996.
  14. G, Guennebaud. L. Barthe, M. aulin."Interpolatory refinement for real-time processing of point-based geometry." Proceedings of the Eurographics, 24, 3,, 657-667, 2005.