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Abstoct

This paper analyzes the perfbrmaiKe of various single channel speech enhancement algorithms vdien they are applied to automatic 

speech recognition (ASR) system as a prqjrocessor. Ihe functional modules of speech enhancement systems are first divided into 

fcw maj(^ modules siM?h as a gain estimate, a noise power sp^trum estinator, a priori signal to noise ratio (SNR) estimator, 

and a spach absence probability (SAP) ^timator. We investi^te the relationship between sp^h recognition accur^y and the 

roles of each module. Simulation results show that the Wiener filter outperfoms other gain functions such as minimum n^n square 

earor-short time spec代신 an^litiMfe (MMSESTSA) and ininiinuni mean square error-log ^)ectral 我即litude (MMSE-LSA) estimators 

whoi a p^fect noise ^timatar is 聊lied. When the paftrmance of the noise estimator ck^rades, however, MVSE meftocb including 

the decision directed nxxlule to estimate a priori SNR and the SAP estiiWioii module helps to improve the perfomwnce of the 

enhancement algorithm for speech recognition systens.

K^words: Single channel speech enhancement, Speech recognition, Performance analysis

I. Introduction

In the past decades, the performance of automatic 

speech recognition (ASR) systems has increased 

significantly, but they have not been broadly used 

for commercial purposes because performance is 

severely degraded in noisy environments [1], One 

of the approaches to overcoming this problem is 

adopting preprocessing techniques such as speech 

enhancement or noise redaction modules [2-4]. If 

noise signals have relatively stationary charac

teristics compared to speech signals, a single channel
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speech enhancement technique is very effective in 

improving ASR performance. How온ver, the effect of 

preprocessing techniques on ASR performance has 

not been fully understood as yet [5]. It has not been 

investigated which functional module among the 

various techniques is the most important to 

improving the speech recognition performance and 

how much or whether it affects performance.

Spe윤ch enhancement al용orithms consist of four 

functional modules, namely noise power estimation, 

gain estimation, a priori SNR 은stimation and a 

speech absence or presence probability decision 

logic with soft-decision [6-9]. The noise power 

estimation is an essential component which decides 

the overall performance of the enhancement system, 

and h화s been develop얀d based on the assumption 
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of somewhat slowly varying noise environments. A 

commonly used approach for estimating the noise 

power spectrum is to average the noisy spectrum 

over speech absent regions. It generally detects 

speech abs연nee regions using a hard—d언cision rule. 

To reduce the artifacts caused by misdetection, 

speech pause detection with a soft-decision rule 

using an a posteriori SNR has also been proposed 

[8]. However, detection reliability severely deterio

rates for non-stationary noise environments. The 

algorithm for noise estimation based on minimum 

statistics obtains the noise spectrum by using 

minima values of th운 smoothed power spectnim of 

the noisy signal. Since it is sensitiv은 to outii은 

however, estimated noise components are generally 

biased and their variance can be about twice as large 

as that of a conventional noise estimator [10] [11]. 

The minima controlled recursive averaging (MCRA) 

noise estimation algorithm improves the robustness 

of the minimum tracking with th연 simplicity of 

recursive averaging [1] [12]. It averages past 

spectral pow연r vahi^s with a smoothing parameter 

that is adjusted by the speech presence probability 

in each sub-band, and the speech presence 

probability is controlled by minima values of a 

smoothed periodogram.

The gain estimator is a module to determine the 

reduction level for each fre야uency bin of a noisy 

speech signal. The spectral subtraction algorithm, 

Wi연ner filtering and the maximum likelihood (ML) 

envelope estimation are well-known examples 

[2] [9] [13]. In the spectral subtraction algorithm, 

gain is derived from the variance of each signal 

spectral component using the sq니are root of the 

maximum likelihood (ML) estimator [2] [9]. The gain 

estimator based on Wiener filtering utiliz안s the opti

mal minimum mean-square error (MMSE) method of 

each signal spectral component [13]. Since spectral 

subtraction, the Wiener filter and the ML estimator 

are not optimal spectral amplitude estimators under 

imperfect noise estimator environments, several 

criteria combining both a priori and a posteriori SNR 

have be으n proposed to derive various short time 

spectral amplitude (STSA) estimators [2] [9] [14]. 

The minimum mean squared error-short time 

spectral amplitude (MMSE-STSA) estimator is an 

optimal estimation method as its solution is derived 

mathematically by minimizing th연 mean-square 

error of the cost function based on the Gaussian 

model under a statistical independence assumption 

[6]. The minimum mean sq 냐 ared error-log spectral 

amplitude (MMSE-LSA) estimator uses the cri

terion of minimizing the mean-square error of the 

logspectra [7]. The MMSE-LSA gain estimator is 

verified to be very efficient in reducing musical 

residual noise phenomena, because a distortion 

measure in the log spectrum domain is more suitable 

for speech perception.

A priori SNR estimation is needed to implement the 

MMSE estimator. The MMSE noise suppressor can 

be more effective if a nonlinear smoothing procedure 

is used to obtain more consistent estimates of a 

priori and a post은！*iori SNR which are used to control 

the gain function. And it is well known that the 

decision directed method is commonly used to decide 

the a priori SNR, which is also efficient in eliminating 

musical noise [15] [16].

The gain functions also consider the uncertainty of 

speech presence or absence in real environments. It 

is well known that the perceptual quality of the 

enhanced speech signal is improved when the speech 

absence probability (SAP) is individually calculated 

in each frequency bin. Several key algorithms that 

utilize the signal~to-noise ratio (SNR) of each 

frequency bin have been proposed to estimate the 

speech absence probability [1] [8] [17] [18] [19]. An 

adaptation of a priori SAP using the SNR information 

is proposed to improve the performance of MMSE 

and LSA algorithms [8]. The algorithm recursively 

averages the index function determined by a hard 

decision rule based on the a posteriori SNR. Since 

the hard decision rule could not utilize the SNR 

information efficiently, however, misclassification of 

the speech activity could cause undesired artifacts. 

To further improve the performance, adaptive 

tracking and a soft decision for the a priori SAP are 
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needed. The method that combines three parame - 

ters, namely the local and global values of the speech 

absence probability and a soft decision on whether 

the curr얀nt fram야 contains speech or not, for the a 

priori SAP 은stimation has been proposed [1] [17].

In this paper, w얀 analyze the effect of each module 

of the speech enhancement algorithms to the 

performance of automatic speech recognizer sys

tems. Actually, it is very difficult to independently 

analyze the independent contribution of each func

tional mod니e to recognition performance beca니se 

they are organically coupled with each other, so that 

it is hard to separate the role of 얀ach functional 

module. Therefore to observe the influence of a 

particular module to recognition performance, we 

need to fix the other functional modules. In other 

words, when we focus on analyzing the effects of the 

SAP estimator, the noise estimator and a priori SNR 

estimator modules should be fixed.

We compare performances of four gain functions, 

namely the Wiener, the MMSE-STSA estimator, the 

MMSE-LSA estimator, and the optimally modified 

log™ spectral amplitude (OM-LSA) estimator in 

various SNR noise environments in terms of recog

nition rates. From the results, we investigate how 

the gain estimators affect speech recognition 

accuracy. Effects caused by the performance of the 

noise estimator ar안 also analyz얀d. W얀 assume 

perfect noise estimation first, and us얀 a first-order 

r•잔cursive smoothing to simulate the degradation of 

the noise estimation accuracy. We investigate the 

effects of the a priori SNR estimator to the speech 

recognition accuracy when various noise estimators 

are applied. To evaluate th얀 effect of speech absence 

probability to ASR, we select two methods： a method 

of fixing the SAP values for all frequency bins and 

an adaptive method of tracking the SAP vahi연s for 

each frequency bin continuously [8].

Experimental results show that the Wiener filter 

outperforms other gain functions such as MMSE 

—STSA, MMSE—LSA, and OM—LSA estimators 

when a perfect noise estimator is applied. When the 

noise estimator works improperly, however, the 

decision directed method to estimate a priori SNR 

and SAP estimation m은thod helps to improve the 

performance of enhancement algorithms for speech 

recognition.

Th연 organization of this paper is as follows. 

Section 2 introduces various single chann연 1 speech 

enhancement algorithms used for performance 

analysis in this paper. In Section 3, the effects of 

each module comprising the speech enhancement 

algorithm on speech recognition performance are 

investigated by simulations. Section 4 includes the 

experimental setup and results. Finally, Section 5 

summarizes the contributions made in this paper.

2. Single Channel Speech Enhancement 

Algorithms

This chapter briefly introduces various single 

channel speech enhancement algorithms used in this 

paper. Let X(k」) = A。시)d"이) and D(k,l) d&iote th연 

k-th coefficient of the discrete Fourier transform of 

the speech signal x(t) and 냐技correlated additive 

noise signal d(t) at the l~th frame. Then, a coeffi

cient of Fourier transform of the observed signal y(t) 

can be represented as

Y(k,l) = R 애"捉回시) = XQ이)* (1)

where R(k,l) and 0(k,l) represent the magnitude 

and phase of the observed signal y(t). In general, 

only the estimated magnitude is used for sin이션 

channel speech enhanc슨ment since it is well known 

that the influence of the phase component is minimal 

[1] [6] [7]. Thus, the enhanced signal is obtained as 

follows,

文。이、) = 시、)此나이 L (2)

The magnitude estimation A(k,l) is given by

A(k,l) = G(k,l)R(k,l), (3)
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where G(k,l) denotes a gain function to be multi

plied to the noisy signal for enhancement. Fig. 1 

represents a basic block diagram of single channel 

speech enhancement algorithm.

2.1. Wiener Filter
The Wiener Filter corresponds to the criterion of 

minimizing the mean-square error of the best time 

domain fit to the speech waveform. Assuming that 

speech and noise signals obey normal distributions 

and are not correlated, the Wiener amplitude 

estimator in the frequency domain derives a gain 

function as ⑹ ⑼[13] [22]： 

that the Fourier expansion coefficients can be 

modeled as statistically independent zero-mean 

Gaussian random variables [6].

The MMSE estimator A(k,l) of A(k,l) and the gain 

of th연 MMSE spectral amplitude estimator which 

minimizes the m양an square error of the A(k,l) ar•쯘 

obtained as follows,

而이) =E{A(kJ)\Y(kJ)}, (5)

Gmmse (奴 /)二5) ——— exp(--- ---)
yQ디) 2

이) —
制 5 典시）

广1* 即）
(4)

[(1+以3)/°(쓰')）+岫以쓰鸟,

(6)

In Eq.(4), corresponds to the a priori SNR 

defined by 談]이、) = AR이、) I 人技이) . 시知) and 財이、) 

denote th엱 variances of speech and nois안, respec- 

tiv엉ly* Since the performance of the Winner filtering 

is related to a priori SNR estimation, th안 noise power 

spectral density (PSD) estimation module is the 

most important.

2.2. MMSE-STSA
Since the Wiener amplitude estimator is derived 

from the optimal minimum meanf quar엇 error signal 

spectral estimator, it is not an optimal spectral 

amplitude estimator 니nder the assumed statistical 

model and criterion. MMSE-STSA estimates the 

spectral amplitude using the statistical model that 

utilizes asymptotic statistical properties of the Fou

rier expansion coefficients. Specifically, we assume

Fig, 1. Basic concept of single channel speech enhancement 

with four major modules.

where r(o) denotes the gamma function, with 

「(15) = &/2 [23], and A(4 are the modified 

Bessel functions of zero and first order, respectively. 

I사이') and the a posteriori SNR are defined by 

必,/)=帥助，即)/(1+*即))and y(k,I) = R(.k,l)2/Ad(k,l\ 

respectively. The MMSE estimator is nearly equi

valent to the Wiener estimator at high SNR. On the 

other hand, the MMSE estimator yields significantly 

lower mean square error and bias under low SNR 

environments [6].

23 MMSE-LSA
While the MMSE estimator is mathematically 

tractable, it is not the most meaningful one in the 

perceptual sense. It is well known that a distortion 

measure based on the mean-square error of the 

log—spectra is more suitable for speech signal 

perception [7]. Such a distortion measure is 

therefore extensively 니s운d for speech analysis and 

r 언 cognition.

By minimizing the distortion of Eq. (7), the ampli - 

tude estimator of A(k,l) can be obtained as Eq. (8).

DMSE = E{(logA(k,l)-logA(k,l))2} (7)
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及Ml) = exp{이:m 40財) I Y(k,l)]} (8)

Utilizing the assumed Gaussian model, the mini

mum mean-square error log spectral amplitude 

(MMSE-LSA) estimator is defined by

公即)=1§씞孑띠 싸 ⑼

It is interesting to note that the LSA estimator gain 

function G^(k,D always gives a lower gain than the 

MMSE gain function . In addition LSA gain

functions also converge to the Wiener solution at 

high SNR [7].

24 OM-LSA
In the MMSE-LSA estimator, the gain function 

should be modified by considering the uncertainty of 

speech presence in real environments, which req

uires the computation of the speech absence 

probability (SAP) [17]. Applying the hypothesis of 

speech presence (Hi) and absence (Ho) to the 

MMSE-LSA estimator, the modified amplitude esti

mator can be obtained by Eq. (10).

血이) = exp {£[ln A(k, /) | Y (k, /)]}

= exp{E\)nA(k,l) \ 印"),%]}》시)

xexp{砸當即)IP 如)血]}IM. (10)

The conditional probability of speech presence 

p(k,l) and 난le optimally modified LSA (OM-LSA) 

gain ^om-lsa can be derived as

p(k,l) =F(히y即)) = [1+Q上繁(1 + S即))e-m] ,
I qQ아) J

(11)

G아4_LSA(k,T) = {G頌化Z)}'如) XG侦任气 (12)

where q(k,l) and(扁 represent the a priori speech 

absence probability (SAP) and minimum threshold of 

gain for a non-speech component. When speech is 

absent, the gain is constrained to be larger than the 

threshold G血“ determined by a subjective criterion 

for noise naturalness. Since the gain modification to 

utilize the uncertainty of speech presence is very 

efficient in improving the perceptual quality of the 

MMSE-LSA enhancement system [1] [8] [17], the a 

priori SAP is a key parameter of the gain modifier 

to adjust the level of noise suppression. The SAP can 

be estimated as either a fixed value q for all 

frequency bins or individually calculated values 

q(k,l) in each frequency bin [8]. Those SAP esti

mation algorithms will be explained precisely in 

Section 3.4. The enhancement system using uncer

tainty of speech presence additionally needs an 

estimator for obtaining speech presence probability.

3. performance analysis

The single channel speech enhancement algorithm 

considered in this paper consists of four major 

modules, namely a gain estimator, a noise power 

spectrum estimator, a priori SNR estimator, and an 

estimator of speech absence or presence probability 

for soft decision [8] [17]. Unfortunately, there have 

been no studies analyzing relationships between the 

major modules and speech recognition performance. 

This chapter describes effects of each module in a 

speech enhancement algorithm to the speech 

recognition performance.

First, Section 3.1 compares effects of gain 

functions on speech recognition accuracy. The 

effectiveness of several gain estimators such as the 

Wiener filter, MMSE estimator, and LSA estimator is 

compared using a cepstral distance measure. The 

influence of noise power spectrum estimators on 

recognition accuracy is analyzed in Section 3.2, 

based on measurements of cepstal distances of 

enhanced signals by different gain functions as the 

performance of noise estimator becomes degraded. 

In Section 3.3, effects of the decision directed 
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method that estimates a priori SNR are analyzed. 

Finally, Section 3.4 includes analysis abo녀t the a 

priori speech absence probability (SAP). Two simple 

techniques to estimate SAP are introduced to 

analyze the influence of the SAP estimator on speech 

recognition performance when different noise 

estimators are coupled.

16 kHz sampled clean sp얀ech signals from th언 

TIMIT dat헌bas은 [21] with 630 speakers are used for 

our experiments. The speech is corrupted by three 

different noise types, such as whit연, babble, and 

destroyer engine noise taken from the Noisex92 

database [24], with various SNRs. White noise 

having uniform spectrum in all frequency regions is 

commonly used for various experiments in speech 

signal processing applications. Babble noise, which 

many people speak simultaneously, can be regarded 

as more non-stationary and more speech-like than 

white noise. The destroyer engine noise generated 

from a defective machine has high energy in several 

frequency bins and can be considered as a more 

mechanical noise. The simulation res냐Its in tables 

and figures of this paper are averaged values of the 

results obtain은d from 3 different noise environ

ments. The speech 은nhancement processing is 

conducted using 512 point FFT with Hanning window 

and 50 % ov얀而p.

3.1. Gain Estimator
Comparisons of the performance of all gain func- 

tioR오 at one얀 is not possible because parameters 

needed for calculating each gain function are 

diff얀rent in each case. For example, both th안 MMSE 

and the LSA gain functions need estimated noise 

spectrum and estimated a priori SNR, while the 

Wien우r filter needs only the estimated noise 

spectrum (See Fig. 1). In addition, since the estima

tion accuracy of parameters for gain functions are 

deeply related to other functional mod냐les, th욘 other 

modules need to be fixed when changes caused by 

the gain function is to be observed. Thus, in our 

experiments, it is assumed that the noise estimation 

is perfectly performed and the decision-directed 

m원thod for a priori SNR estimation is not considered.

In order to q나antify contributions of each module 

to speech recognition performance, the mel frequ

ency cepstral distance (MFCD) between the enhanced 

speech and the clean speech is measured. For the 

1-th frame, the MFCD is computed as

1 K
mfcdq)=云 1 (撰),

k y £=i
(13)

where Cc(i,l), C£(i,l) and K are the i-th 이신 

frequency cepstral coefficients of the clean and the 

enhanced speech signal at the 1-th frame, and the 

number of cepstral coefficients, respectively. The 

distortion of the mel frequency cepstral coefficient 

(MFCC) is a common and useful paramet언r in 

determining the performance of ASR systems, and 

thus a good measure to represent how well noisy 

speech is enhanced for ASR systems.

The MFCDs obtained from each algorithm under 

various noise types and input SNR environments are 

shown in Table 1. The MFCDs are calculated under 

3types of noise environments, such as white, babble, 

and destroyer engine nois은, The averaged values are 

shown in Table 1. Since perfect noise e닸timation is 

assumed and the decision direct은d method for 

estimating a priori SNR is not employed, the 

estimated a priori SNR £(") is replaced by the 

instantaneous SNR 0(") T), where y애시) denotes 

a posteriori SNR. Actually, the instantaneous SNR 

(，(幻Z)~l) represents the perfect a priori SNR 

in this case.

T잤)le 1. Averaged MFCDs of signals enhanced by various en

hancement algorithms with perfect noise estimation 

in vario니s noise environments.

Algorithm 0 dB 5 dB 10 dB 20 dB

Wiener 1.852 1.690 1.476 1.029

MMSE 1.917 1.772 1.599 1.201

LSA 1.8779 1.723 1.542 1.132

OM-LSA
Fixed 1.996 1798 1.579 1.148

Malar 1.955 1.811 1.594 1.156
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As shown in Table 1, the Wiener filter with good 

noise estimation shows the best performance. These 

results seem reasonable, since the Wiener filter is 

an optimal solution when it has perfect knowledge of 

the noise components. Besides, as the Wien욘r filter 

utilizes only the instantaneous SNR instead of a 

priori SNR estimated by the decision-directed 

method that is smoothing the input spectrum, it 

minimizes the distortion which can be caused by 

spectrum smoothing when the nois은 spectrum is 

known. Hence, the Wiener filter with good noise 

estimation can be regarded as an upper bound for all 

surveyed enhancement algorithm윤 adapted as a 

preprocessor for fh연 ASR system.

The results 아low that 나比 MFCD of the MMSE 

estimator is bigger than those of LSA, Indeed, the 

performance of LSA is always superior to the MMSE 

for all following experiment categories. This is 

caused by the fact that both 난迢 LSA and the MFCD 

operate on the log domain. Since the LSA's criterion 

is more closely related to the cepstrum, it is possible 

to directly minimize the error in the cepstrum domain 

and get even better result응.

It is notable that the performance in the babble 

noise environment is worse than that of the white 

noise environment. This is because babble noise 

introduces distortion in the frequency regions where 

most speech components exist. MFCDs from the 

destroyer engine noise are bigger than others, since 

large energy components of noisy signals are not 

completely suppressed and still remain even after 

enhancement processing. The order in which each 

algorithm performs is still preserved, however, and 

the Wiener filter shows the b은st performance, and 

LSA outperforms MMSE irrespective of noise types.

3.2. Nois즌 Spectrum Estimator
The performance of single channel speech 

enhancement algorithms mainly depends on the 

efficiency of noise power spectrum estimator. This 

subsection focuses on analyzing effects caused by 

the performance of the noise estimator. Actually, the 

true noise power spectral density (PSD) is 

unattainable even we are able to use any reliable 

noise estimator. The difference between the true 

noise PSD and the PSD estimated by the noise 

estimator needs to be controlled. To control the 

amount of the difference, the noise estimator is 

artificially generated for simulations as

丸。이、) = S 차— 녹(長 (14)

where 丸(k」、), 人이) andare the estimated 

noise power, the true noise power of 比욘 k™th 

frequency bin in the 1-th frame, and a smoothing 

factor, respectively. The noise estimator with =0 

means perfect estimation. As the smoothing factor 

% increases close to 1, the performance of the noise 

estimator becomes degraded. Since the worst case 

of is experimentally impossible to realize, we 

replace it with the exceptional estim거tor, which uses 

averaged noisy spectrum during non-speech period 

detected by a perfect VAD (Voice Activity Detec

tor).

Fig. 2 shows normalized root mean squared error 

(RMSE) values of the estimated noise power spec

trum as the smoothing factor % varies. The RMSE 

values of the estimated noise spectrum are obtained 

by

Fig. 2. The normalized RMSEn of estimated noise spectrum.
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where L and K denote the mimber of frames and 

number of frequency bins, respectively. The nor

malized RMSE values in Fig. 2 are calculated by 

normalizing the RMSE value in Eq. (15) by its 

maximum value (when Fig. 2 shows that the 

noise estimator used in the simulations, including the 

exceptional 안stim&tor, represents linear r은1 砒ionship 

to the smoothing factor % in the RMSE sense.

Table 2 shows the MFCDs of 언nhanced speech 

signals by each algorithm as the smoothing factor % 

varies from z연ro to one. Th쩐 ®xp연riments ar연 

conducted in 0 dB white, babble, and destroyer 

engine nois원 environments, and th안 허MFCD 

I•은suits are shown in Table 2. The decision directed 

method is not employed.

Results show that the MFCDs of all surveyed 

algorithms are monotonically increasing as th언 

performance of the noise estimator becomes worse. 

The consistent increase of all MFCDs confirms that 

nois은 estimation significantly affects the performance 

of enhancement systems for speech recognition. Th은 

MFCDs of the enhanced signal by the Wiener filter 

especially increase faster than others. The Wiener 

filter works best with a perfect noise estimator and 

does worst with the noise estimator using VAD 

among the surveyed algorithms. The MMSE and LSA 

gain functions show better performance than the 

Wiener filter when noise estimator operates coarsely, 

because of their differences on gain curves [6]. 

Table 2 also confirms that LSA always outperforms 

MMSE, because the LSA's criterion is more closely 

related to the cepstrum, it directly minimizes the 

error in the cepstrum domain.

Table 2. Averaged MFCDs of signals enhanced by various 

enhancement algorithms varying the smoothing factor 

of noi蹌 estimator jn various noise environments.

시 gc孵thm 0.0 0.2 0.4 0.6 0.8 VAD

Wiser 1.852 2.674 3.004 3.242 3.447 3.612

MMSE 1.917 2.975 3.164 3.29 3.415 3.537

LSA 1.878 2.941 3.150 3.272 3.383 3.524

OM 뉴SA
Fixed 1.996 2.914 3.092 3.213 3.372 3.524

Malar 1.955 2.927 3.074 3.181 3.353 3.518

3,3. A priori SNR Estimator
The estimation of a priori SNR is also an essential 

part for nois연 응uppwe않sion such as in th안 MMSE and 

the LSA estimator. The decision directed method is 

or연 of the most commonly used estimators for a 

priori SNR and shown to be essential in eliminating 

musical noise phenomena [15]. We survey effects of 

the decision directed method on speech recognition 

performance. The decision directed nil연 can be 

obtained by recursively averaging a priori SNR of the 

pr안vious frame and th안 instant&n안。나s SNR of the 

current frame [6].

氾 I) = adG2 (瓦 / - Z-1) + (1-«J max[ {y(k,/)-!}, 0],

(16)

where Y®)’ cy and -皈(k」-1) represent

a posteriori SNR at the k-th frequency bin in the 

1-th frame, a smoothing factor, and the a priori SNR

니King from the processing of th언 previous frame, 

respectively. ad=0 means that a priori SNR 이) is 

estimated as instantaneous SNR As the

smoothing factor %】 increases near to L estimated 

a priori SNR approaches the estimated a priori 

SNR of the previous frame 為*,/T).

Fig. 3 shows MFCDs of signals enhanced by using 

different noise estimators as th운 smoothing factor

Fig. 3. Averaged MFCDs of enhanced sign기s using LSA gain 

function according to % when different noise esti- 

mahxs are used under various nois으 environments.
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varies. The LSA algorithm is applied to the 0 dB 

white, babble, and destroyer engine noise environ

ments. The averaged val냐es are shown in Fig. 3. 

Only the MFCD of the enhanced signal under perfect 

noise estimation monotonically increases as the 

smoothin흉 factor ad varies. That is, if the nois으 

power sp연ctrum j앙 known precisely, a priori SNR 

修(&U) can be estimated a동 instantaneous SNR

Since the decision directed method esti

mates a priori SNR by averaging the a priori SNR of 

the previous frame and the a posteriori SNR of the 

current frame recursively, it results in degraded time 

resolution so that phones of short duration are not 

recognized well. However, the MFCDs under worse 

noise estim허tion environments decrease as the 

smoothing factor % increases. Those achieve minimum 

values around 0.9. That is, when the noise 

estimator works improperly, as is general in real 

applications, enhancement algorithms for ASR sys

tems need to be supported by the decision directed 

method. Even though the decision directed method 

has been developed to improve perceptual quality, it 

h샨Ips to improve speech recognition performance 

when the noise power spectrum is improperly 

e 돈 timated*

34 SAP Estimator
The OM-LSA gain function additionally ne얀ds the 

estimated speech absence probability SAP compared 

to the original LSA algorithm (See Fig. 1). Several 

SAP estimation algorithms have been developed 

[1] [8] [17] [18]・ However, this paper focuses on two 

most commonly us으d methods such a도 constant SAP, 

q, and th얀 method proposed by Malah [8].

The simplest idea for SAP estimation is to apply 

a fixed SAP value, q=0.2, to all frequency bins [6]. 

However, speech signals can be con둰idered as 

having quasi-harmonic and non-stationary charac

teristics. Furthermore, speech energy may not be 

present in all frequency bins. Thus, it seems more 

돊uitable to apply a different value to each frequency 

bin for each frame, instead of assigning the same 

value of q to all frequency bins.

One of the estimation methods to obtain distinct 

values of q for 은ach frequency bin in each frame is 

proposed by Malah in [8]. This method uses a 

recursive averaging of index function I(k」)，which is 

a hard decision rule of speech presence bas연d on the 

a posteriori SNR, 7(3, and represents speech 

absence likelihood in each frequency bin. (ie 

I(k,l) = 0, if 7아시、) Ny说, and I(k,l) = 1, otherwise). The 

estimated a priori SAP 沁」、)is as follows

豚 Z) = % 狗盘 T) + Q - % )I(k, I) (17)

This method, 운stimating distinct values of SAP for 

different frequency bins which are tracked in time, 

copes reasonably well in non-stationary speech 

regions and frequency bins wher즌 speech does not 

exist.

Tabl댠 1 shows the MFCDs of signals enhanced by 

the OM-LSAs with a perfect noise estimator. It is 

worthy to note that the MFCDs of the OM-LSAs ar으 

higher than those of oth은r algorithms. This could be 

due to artifacts caused by the stricter than neces

sary assumption, such a돊 assuming perfect know

ledge of the noise spectrum and the a priori SNR 

However, it rev순als that the SAP estimator developed 

as a modification to improve perceptual quality for 

human listeners could cause adverse effects in the 

performance of an ASR system, especially if the 

noise estimator works very well.

At the bottom of Table 2, the MFCDs of signals 

enhanced by the OM-LSAs with different noise 

estimators are shown. The OM-LSA gain estimators 

are more robust than other gain function옹 under 

unreliable nois얀 estimation environments, such as

2 00 It is because 나｝은 OM-LSA estimator takes 

into account the possibilities of speech abs운nee for 

the non-speech region and weak speech com

ponents while th은 MMSE and the LSA assume that 

the speech signal always exists for every spectral 

component. The SAP estimator helps to improve 

performance of enhancement by making up for 
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mistakes of the coarsely working noise estimator.

4. Experimental results and discussion

This Section provides experimental insults and 

discussions. The mean opinion score (MOS) test and 

the speech recognition test are conducted. The MOS 

test is used to show the relationship betwe연n 

perceptual quality and speech recognition per

formance under good noise estimation environments. 

The recognition performance is analyzed under 

several conditions, such as when the noise estimator 

works perfectly or its performance gets degraded, 

and whether the effect of the d연cision directed 

method is considered or not.

4.1. Experimental Environments
The MOS test is used as a perceptual quality 

measurement to estimate the performance of various 

enhancement algorithms. A total of 20 listeners ar원 

asked to score 1-5 points for each enhanced speech 

sample. The hidden Markov toolkit (HTK) is used for 

speech recognition simulations [20]. The IfTK recog

nizer is trained by using the clean speech database 

and t른sted by using both noisy and enhanced speech 

samples. Noisy sp영ech is generated using two 

different noise types, the white and babble noise 

taken from the Noisex92 database, with different 

SNRs. The TIMIT speech database [21] with 630 

speakers is 낞sed for simulations. For phone 

recognition, th은 61 TIMIT phones are mapped to a 

reduced set of 39 phones in training and testing 

procedures [25], and results are reported on the 

reduced s톤t. The analysis of recognition results is 

performed for only 18 vowels headed by /a/, /e/, /i/, 

/o/, and /u/< The recognition r얀suits of other phones 

are excluded from the analysis in order to handle the 

data that 응hows more analyzable results, because the 

weak energy phones such as fricatives are minimally 

enhanced by any single channel enhancement algo

rithm, especially in low SNR environments. The 

recognition rates of most of consonants, 얀sp은ci&Uy 

weak-energy consonant phonemes headed by /b/f 

/d/, /g/, /p/f /t/, and /k/t are much lower than the 

analyzable level in low SNR. Moreover, since there 

are little differences between the recognition rates 

for low energy components, the comparison of 

results for vowels is enough to evaluate the per

formance. The recognition rate is calculated by 

summing th연 correctly recognized percentage of the 

vowel phonemes.

42 Experimental Results and Discussion
Table 3 shows the averaged MOS test scores of 

enhanced signals obtained from each enhancement 

algorithm with a reliable noise estimator (%v ~ °-2) 

under various noise environments such as white, 

babble, and destroyer engine noise. The OM-LSA 

algorithm with the SAP estimator used in Malah's 

method shows the best performance in terms of the 

perceptual quality. The LSA estimator shows better 

performance than the MMSE estimator, since human 

hearing characteristics is better incorporated using 

a logarithmical magnitude. The Wiener filter shows 

the worst perceptual quality among all tested 

algorithms due to the nuisical noise, though it 忙 

theoretically the optimal solution for a mean square 

error (MSE) criterion. The results show that consi- 

d원ring human acoustic characteristics and speech 

presence uncertainty may lead to enhanced perceptual 

quality.

Table 4 shows the speech recognition rates of 

enhanced signals when perfect noise estimation is 

used without the decision-directed method as Eq. 

(16) in various noise environments. The Wiener 

filter shows the best performance when it has a

Table 3. Averaged MOS test scores in various noise environ

ments.

Algorithm 0 dB 5 dB 10 dB 20 dB

Wiener 1.91 232 274 3.93

MMSE 2.01 3.09 2.89 3.87

LSA 2.37 2.73 3.27 4.19

OI-LSA
FixE 255 3.03 3,52 4.36

Malar 2.73 3.21 3.57 4.40
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perfect knowledge of noise components, as it 년tilizes 

only the instantaneous SNR so that it minimizes the 

distortion which can be caused by spectrum 

smoothing when the noise spectrum is known, while 

the others use a priori SNR estimated by the 

decision-directed method that is smoothing the 

input spectrum. Although the Winner filter is rarely 

used for enhancement applications due to its per- 

ceptnal quality, it can work w시 1 for a recognition 

system with a good noise estimator. It is verifi은d that 

the MMSE-STSA and MMSE-LSA 아low similar 

performances to the Wiener filter in high SNR 

environments [6] [7]. The recognition rate of MMSE 

degrades somewhat more rapidly than that of LSA in 

low SNR environments. It is related to the obser

vation that the MMSE gain function suppresses weak 

speech or non-speech components Ins aggressively 

than the LSA estimator. The results also show the 

effects of the SAP estimation on the ASR perfor

mance. As shown in the results, the perceptual 

improvement does not always match the recognition 

performance. The OM-LSA algorithms using a 

dynamic SAP estimator show worse recognition 

performance. To consider the speech uncertainty 

improving perceptual quality can adversely affect 

speech recognition performance due to unnecessary 

speech distortions under good noise estimation 

environments

Fig. 4 represents the recognition rate of the 

algorithms as the averaging factor of the noise 

estimator varies. We may assume that the perfor

mance of the estimator degrades as the smoothing 

factor approaches one. Experiments are performed

Ta비e 4. Averaged cognition rate (%) with a perfect noise 

estimator in various n어蹌 environments.

SNR 0 (ffl 5 dB 10 dB 20 dB

clean 68.14

N婀 33.88 39.45 44.72 56.78

Wiener 58.02 61.53 63.91 跄42

애M旣 55.59 59.36 6264 66.6

LSA 56.43 的12 63.10 66.62

OM-LSA
Fixed 55.23 59.59 62.75 65.97

hfelar 55,75 59.69 62.92 66.28

without using the decision-directed method in white, 

babble and destroyer engine noise (0 dB SNR) 

environments and the averaged values are shown in 

Fig. 4. The results show that the recognition rates 

of all surveyed algorithms monotonically decrease as 

the p양rformaric은 of th은 noise estimator becomes 

worse. Especially, the recognition acoiracy of 

enhanced signals by the Wiener filter degrades 

faster than the others, while it outperforms other 

algorithms in environments wher은 the noise esti

mator works reliably, such as in the cases where

£ 03. Results also show that the algorithms using 

SAP estimators such as Malah's 1 얀ad to improv원merit 

of the recognition performance under unreliable 

noise estimation environments using %v Z04, while 

they yield worse performance in other regions. In 

other words, the Wiener filter with very good noise 

estimation is far better than any other algorithm for 

speech recognition, and the algorithms using SAP 

estimation can improve the recognition performances 

under unreliable noise estimation environments.

Fig. 5 depicts the recognition rates of signals 

enhanced using different noise estimators, varying 

the smoothing factor a或 of the decision directed 

method. Experiments are performed with the LSA 

gain estimator in white, babble, and destroyer engine 

noise (0 dB) environments and the averaged values 

are shown in Fig. 5. Results show that recognition 

rates of the signal enhanced by a perfect noise

Fig. 4. Averaged recognition rates of enhanced signals under 

various noise environments.
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Fig. 5. Averaged recognition 

varying the 区/ 냐nder

rates of enhanced signals with 

various noise environments.

얀stimafor is monotonically decreasing as。矗 incr안as會s 

and it has a maximum value when %=0. In other 

words, when noise components are perfectly known, 

any smoothing in the time domain leads to adverse 

effects in speech recognition.

On the other hand, the recognition rates under 

worse noise estimation environments increase as th은 

smoothing factor ccd increases The recognition rates 

show maximum around ^=0.8. That is, when 

the noise 얀stimator works improperly, th안 decision 

directed method can improve the enhancement 

algorithm in terms of the speech recognition rate. 

measure. The effects of the performance of the noise 

estimator were analyzed under environments where 

the performance of noise estimator was degraded. 

We also investigated effects of the decision directed 

method in estimating th뎐 a priori SNR. The infl나ence 

of the SAP estimator on speech recognition was 

analyzed when different noise estimators were 

coupled.

The MOS test was used to show the relationship 

between perceptual quality and speech recognition 

performance. The recognition performance was 

an죠lyzed under several assumptions, such as when 

the noise estimator was assumed to work perfectly 

or when performance was degraded, and whether the 

effect of the decision directed method is considered 

or not. In simulation results, the Wiener filter shows 

better performance than other gain functions such as 

MMSE and LSA estimators und얀r a perfect noise 

estimator environments. When the performance of 

the noise estimator becomes degraded, however, the 

decision directed method to 안stim&t® a priori SNR 

and SAP estimation method helped to improve 

performance of enhancement algorithms for speech 

recognition.

5. Conclusion

Throughout this paper, most of our attention was 

focused on describin잉 the relationship between a 

speech recognizer and speech enhancement systems 

by investigating several enhanc안m연nt modules. We 

reviewed various single channel speech enhance

ment algorithms. The Wiener filter, MMSE, LSA, and 

OM~LSA gain estimators were introduced. The 

noise estimator, a priori SNR estimator, and SAP 

estimator of single channel speech enhancement 

systems were described.

The effects of each module on speech recognition 

performance were investigated by simulations. We 

compared effects of several gain functions to speech 

recognition performance by using a cepstral distance
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