Journal of the Society of Korea Industrial and Systems Engineering

Vol. 33, No. 2, pp.112—126, June 2010.

ARMA-PL : AIAIQ dlofelo]l Uepts

AZFAol digt 2F

MR- oA - Q@S - AP - Q) b 21

ARMA-PL : Tackling Nested Periods and Linear Trend in
Time Series Data

Jung-Yul Suh* - Sae-jac Lee* - Hyun-Seung Oh** - Ja-Hwal Koo* - Lim Taek* - Jin-Hyung Cho*'

*Department of Industrial and Systems Engineering, Kumoh National Institute of Technology
**Department of Industrial and Systems Management Engineering, Hannam University

AAGdolEE ARMA B0 AgA e 848 WAsL g B9 Aok 5§38 A4 F18E 7K 8
27F FEHY Bxg A5 EAS gk o] R ofd A¥Y FNH 248 Fohllm s WS
ANgT 53 F18 24t o8 F7171 $50] AAAM dedth F7) gele A2 44 AeEES #Ad
o, 3 F7] ¢t 2 F77F WEHY Y& 4 $Hnested periods)”t BTk AIZHF E(time-scale)7N'd & T8t ol
3 F714 248 Addez APstua Pk AFH 249 F714 247 AAE § F2E HolHE MA-ap-
proximation o2+ W& AHgste] 744 HolEe] ZHE ARMA EdS Fopdrh wixZoE HAFH F714 &
29 ARMA F3Z27E 83} control boundaryE A3 P& AA T

Keywords" : Nested Periods, PL-ARMA, MA-approximation, Time-scale, PWF

1. Overview

In a manufacturing process, readings from sensors placed
at various locations of facilities are monitored to determine
if the process is working normally. Each reading is assigned
a parameter and the stream of data collected over time com-
ing from each reading constitute a time-series for the corre-
sponding parameter. Of the main interest is whether there
is abnormally high or low value in the time-series data. Such
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a data value is an indication that something is wrong with
the process, which should be corrected. Many time-series da-
ta thus obtained have very high autocorrelation among neigh-
boring data values. Frequently, there are significant long-dis-
tance autocorrelation. In such a case, we cannot assume that
all data are iid (identically independently distributed), and
using Shewhart Chart Method will not work. This problem
has been studied previously by using ARIMA model [1, 3,
4] However, our investigations revealed following problems
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were not addresse.

Many real-life time-series data can contain many levels
of dynamic operating on different time-scales. That is,
time-series can be an aggregation of components, whose rate
of change can range from “very fast” to “very slow.” Slow
changing ones tend to create significant level of long-dis-
tance autocorrelation. A rather simple example is time-series
data showing multiple periods of varying length. We need
more than ARIMA meodel to address this problem.

In this paper, we will show how to identify, estimate and
extract these components with varying time-scales, and sub-
tract them from the original time-series data. The resulting
data can be then modeled with ARIMA (in our case, ARMA).
We will show how to identify the presence of different
time-scales in a time-series. In estimating time-scales, we
use a crucial assumption, That is, time-scales in a scries can
be arranged in an hierarchical order, ranging from the short-
est one to the longest one. In this hierarchy, each time- scale
" is a ‘simple’ fraction or multiple of another time-scale right
above or below. We essentially have a ‘nested time- scale’
with specific ratio pattern. Many time-series in nature show
such a relationship and this also turns out to be the case
in the set of time series data we used. Wavelet analysis is
also based on this observation. That is, frequency resolution
in low frequency region is coarse (low), while compact
(high) in high frequency region [11-13]. Estimation of nested
time-scales makes up fhe major part of this paper.

Data we used contain multiple components with different
periods each obeying the ratio constraint mentioned above.
It turns out that such periodic components can account for
significant portion of data value, and with the contribution
of those components subtracted from each data value, the
resulting time-series can be modeled better with ARIMA,
producing a much closer fit.

We now have a time-series model with combination of
ARIMA mode! and nested time-scale model (or nested peri-
odic model in a narrower application). Next, we need to de-
termine the control boundaries of the time-series. That is,
upper and lower boundary (upper control limit (UCL) and
lower control limit (LCL)). While it 1s straightforward to
estimate the boundary for pure ARIMA model, this new
combined model requires more qualified approach. It de-
pends on how we interpret the nature of nested time-scale
components. That is, would they represent acceptable change
or unwanted distortion which needs to be eliminated? Based
on this interpretation, different control boundary needs to be

113

estimated.

typical time series with
strong linear component (dotted line)
and periodic component (smooth curve)

<Figure 1.1>

autocorrelation with strong linear component

<Figure 1.2>

autocorrelation with linear component removed

solid line(dark) : p original autocorrelation for time series with
short and long periods

solid line(light) * autocorrelation after short period removed

broken line : autocorrelation after long period removed, shows
overall. trend

<Figure 1.3>
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FFT of time series with periodic components

<Figure 1.4>
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2. Description of the Problem

The data we are investigating are temperature readings
measured from 9 different locations of a glass furnace. Each
location produces time series data of temperature readings
sampled at one minute interval spanning an entire month.

There are two features of the times series we need to pay
attention to.

First, the temperature measurement is subject to steadily
widening bias. It is measured by a thermometer embedded
inside one of heat-resisting bricks which make up the wall
of the furnace. The brick is subject to steady erosion by molten
glass (silicon) which comes in contact with the brick. As
time goes by, the brick becomes thinner and the thermometer
is exposed to more heat. Naturally, even if the temperature
of the furnace stays constant, the reading would become
higher. A brief look at the data confirms that the data have
a clear upward linear trend in many of 9 time series sets.
Second, the temperature reading is also subject to periodic
changes. Two sources of periodic pattern are already known.

The first one arises from the design of the furnace.

It reverses the flow every 20 minutes, resulting in corre-
sponding temperature change with the same period. The other
is due to nature. Temperature goes up during the day and
down at night. It affects the temperature inside glass furnace,
which also changes in the same direction.

These problems manifest themselves in autocorrelation
chart. The presence of a linear component leads to an auto-
correlation whose value converges to non-zero value, which
cannot be dismissed as negligible. In our case, the autocorre-
lation is solidly stay above zero, never reaching zero even
for very long distance autocorrelation. Of course, this could
be also the indication of very long-distance periodic com-
ponents.

In our study, time series typically has a strong linear com-
ponent as can be seen in <Figure 1.1>. This leads to the
situation where its autocorrelation stays near 1 regardless of
time lag. See <Figure 1.2>.

The presence of periodic components can manifest itself
as recurring peaks in the autocorrelation charts. In <Figure
1.2>, we can observe small recurring wave patterns in the
autocorrelation plot, which is the contribution of periodic
components. In <Figure 1.3>, we can see the autocorrelation
plot after linear component has been removed from the time
series. While the autocorrelation value is now decreasing
overall as the distance (time lag) increases (overall trend :
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broken line), its value is ﬂuctuating up and down in regular
periodic pattern (dark-colored solid line.) By looking for such
pattern in the chart, we can detect the presence of short
periods. For the longer periods, it may be more difficult to
detect the pattern because it is less pronounced (light-colored
solid line). The pattern may cover fairly long period and
it could escape the inspection of the chart by naked eye.

The use of Fast Fourier Transform (FFT) can reveal the
existence of periods more directly as you can see in <Figure
1.4>. At certain periods, its amplitude from FFT result could
be unusually high compared with neighboring periods. Those
periods with significantly high local peaks in amplitude are
due to periodic components. In our data from glass furnace,
20 minute period produces sharply high peaks in the region
of FFT dominated by low amplitude. These are from 20 mi-
nute period and its harmonics. As for longer periods such
as 24 hours or longer, their amplitude is not prominent
enough to be readily noticeable. This is because they show
up on the backdrop of high but ‘rapidly decreasing’ ampli-
tude in the beginning segment of FFT, where long periods
dominate. They can be better detected after some high-
lighting and filtering are done.

A device or a natural system tends to exhibit characteristic
periodic behavior inherent in its structure. Such a behavior
could be frequently made up of several layers of nested peri-
ods with different lengths. The data we are studying are one
of such cases. A single time series has multiple dynamics
overlaid in a hierarchical order, and which are moving at
a different speed, hence having a different time-scale.

3. Theoretical Characterization

3.1 Normal distribution of data from stationary .
ARMA model

If we would use an old method such as Shewhart Chart
for a time-series z,, the series has to satisfy the constraint
that each z, is iid. This implies that the sampling interval
of z, should not be short enough to introduce significant
autocorrelation between adjacent samples. Consequently, we
can only take limited number of samples in a given duration.

It would be nice if we can take as many samples as we
want and still carry out something similar to Shewhart Chart
analysis. It depends on whether we can get around the re-
quirement of the data being iid. In the following, we will
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demonstrate that we can in case of stationary ARMA(p, q)
model.

For the following analysis, we will use z, =z, —p where
u is a mean of all z,’s.

That is, every z, has an identical mean 0.z, represents
the deviation of z, from its mean p.

Then, ARMA(p,q) model can be represented as follows :

2y =¢12t—1 +e +¢p;t*p+

a,—b0_;— —0a_,

That is,
(1-¢,B Z=01-6,B—-
or
¢(B)z,=0(B)a,, where
¢(B)=(1-¢,B~- —¢,B"
0(B)=(1—6,B~-- —0,B%a,

—¢,B" ~8,B8%a,

Here, g, is iid with o, ~ M0, o) for all ¢, that is,

is a noise with normal distribution.

#(B) can be decomposed as follows : ¢(B) = (1~ GB)
(1-G,B)--- (1-G,B).
G-, G are roots of ¢(B)=0. Then ¢ '(B) can
K
be expressed as follows: ¢ !(B) = i " where K s
Zi1-GEB "t

are appropriate constants.
SinceARMA(p, q) is stationary, AR(p) part is also

stationary. Let ¢(B)=¢ '(B)
Then, v, —iKG’“ where ¥(B EzﬂmB’"’.

Therefore, the coefficients {¢,,} of ¢(B) are absolutely
summable. Then,

#(B)7'0(B)aq,
—il GB ﬁ& 2 U(””B’" 0(B)a,
'Z]K(n;omBm) (16,8 —6,B%a,
= LA (éﬂ Gr=0,Gi = —0,G771)Bra,

Il
Ma

i(GT g( Gy a‘t n

0 i=1

n

i=1 j=1
Then
E(;t) = Za'nE(ai-n) = Zan X O O’
n =) =0
Var(z) = Y alEa? ) =02y’
n=0 n="0

since all @,’s are iid.

What we can find out from this calculation is that %’s

are not independent, but they all have the same normal dis-

o0
tribution with mean 0 and variance o2, a2
n=0

min(n,q) )
Since o, =(1— Gf])i}qGﬁ
=1 i=1
min{ntq)

.
et

oo
a,’s are absolutely summable, and D, a? converges.
n=0

Var(z) =02Y a? converges as well.

We can conclude that, by calculating the sample mean
and the standard deviation, we can set up the boundaries
for acceptable parameters, with the upper boundary being
the mean plus some constant multiple C of the standard devi-
ation, and the lower boundary being the mean minus the
said value. Any value falling outside the boundaries is con-

-sidered ‘out-of-control’ event. This is the same process we

used in Shewhart Chart.

3.2 Extending to PL-ARMA Model

PL-ARMA is a special case of ARIMA model. It has line-
ar componenis and periodic components overlaid on top of
stationary ARMA. AR part of PL-ARMA can be expressed
as follows:

@(B) = L{B)P(B)G(B) where
(1) L(B)=1—B, a linear component

2) P(B)={(1—-2B cosi—ﬂ+Bg}X(1-2B cos2—ﬂ+B2)><
1

Ty
x(1—28B 0052l+32)

%
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a periodic component
(3) ¢B)=1-G6B1-GB) - (1-G,B),
a stationary AR component

In P(B), (1—23ws§l—7r+82) =(1-wB)(1-w,B)
k

2 ., 27
where w; = cos —-+isin—,
T i

2r . . 27 —
wk=cos?k—zsmn—k, |wg|= || =1 for

all k=1-p
In G(B), |GJ<1 for all i=1--m.

As you can see, L(B) and P(B) are not stationary terms
because B’s coefficient in L(B) is 1 and the ones in A(B)
are w,, and w, whose absolute value is also 1. With these

components added, AR component &(B) is no longer

- stationary. MA part of PL-ARMA is no different from sta-

tionary ARMA. We can use the same #(B) from the dis-
cussion of ARMA model above. Then the entire model is
expressed in the following equation:

&(B) z,= 0(B) a,

While the equation may look not much different from the
one for stationary ARMA model except more added terms,
the estimation of the PL-ARMA model is actually more
complicated. If there is a linear trend, it would take the form
of z, =a+bt. The value of b can be estimated from (1—2B)
transformation, that is, from {z,—z,_,}, the difference be-
tween two neighboring data value of time series. However,
the value of @ should be estimated again by plugging bt
back to z,.

If there is a periodic trend, it will pose further challenges.
Extracting periodic component may not be achieved with
conventional estimation method(or algorithm based on it.)
Especially, if the component has a fairly long period span-
ning time steps, the estimated value n, of period in w, =

2 ., 2w = 2n .. 2w .

cos —— +isin— or w, =cos— —isin— can be fairly
Ny, oy Ty Ty

large as well. if n; and n; have large values, w, and w,

(or w, and w,) would be virtually indistinguishable from each

other and also to 1.

This means the estimation requires extreme accuracy

which may be practically impossible. A tiny error in estima-
tion of w, and w, (or w, and w;) could lead to wildly in-

accurate estimate of n, and n;.

3.3 Three Stage Estimation Pfocess for
PL-ARMA

We propose that the estimation process is divided into
three stages for a time series {z,} :

stage 1 ! Extracting a linear component
Perform a linear regression on {z,},

find a best fit z,=a,+ byt, and

let vy, =mt—:£t.

Note : y,=0 where y, is the mean of y,.

The dotted line in <Figure 2.1> is the best fit @, = a, + bt.
After removing it from the time series {z,}, we get {y,}
in <Figure 2.2>. The autocorrelation of {z,} in <Figure 2.4>
is changed to that of {y,} in <Figure 2.5>.

stage 2 : Extracting a periodic component

a) Perform Fast Fourier Transform on {y,} and select periods
with usually high amplitude.
Let P={n;, ny-+,n,} be the set of such periods The
process to find such amplitudes is not simple and would
be described in detail later in the paper.

b) Perform multiple regression on {y,} using periodic terms
with the selected periods and find the best fit:

~ 2t . 2mt
y,=c +ﬁ(aiws—n—ﬂ~+bism%)

g i

The regression is performed as follows :

2wt
Y:{yt}, E:{et}’ C;—{COSTi},

8, = {sin 2mt
n

i

J for =10

Y=FE+c +§j(ai0i +5b,8,)
=1

. 27t . 2nt
That is, e, =y, —(c+ § (a, cos :: +¥,sin it )]
i=1

] i

T
Calculate c, a;, and b, which minimize ) e;
t=1

Note : T is the length of time series.
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Let z, =yt—th.
Expanding the right side of the equation, we get:

G T _(xAt+yAt)
2nt
= (a0+c+b0t+2 a; cos +b sin%)

= l 7

The smooth curve in <Figure 2.2> represents the periodic
component, y,. After it is removed from {y,}, we get time
series {z,}, which is shown in <Figure 2.3>. With periodic
component removed, autocorrelation of {y,} shown in
<Figure 2.5> (dark-colored solid line) is changed to that of
{z,} in <Figure 2.6>.

With a linear component a;t and a periodic component
yAt removed from the original time series value z,, resulting
new time series {z,} is now more amenable to ARMA model

estimation method.

stage 3 : Finding the best-fit ARMA model for {z,}

This can be done using many existing programs from SAS
or MATLAB. While linear component wAt or periodic compo-
nent ?;t generates high autocorrelation over fairly long dis-
tance, thus creating long distance dependency, we assume
that the ARMA model for {z,} has dependency over rela-
tively short distance. That is, AR and MA component for
{z,} contain terms from the relatively recent past, not in-
ordinate number of time steps away.

There is still a problem to address. Even {z,} may not
be perfect instance of ARMA model, even though it could
be quite close. Some data segment in {z,} could still distort
the estimation outcome.

As we have seen in previous sections, ARMA model im-
plies that data from {z} should make normal distribution.
Practically speaking, {z,} should be very close-fit of normal
distribution.

We devised our own test to determine how closely the
data from {z,} resembles to normal distribution. This is done
by making use of three known measure of normality fit-
ness : Kolmogorov-Smirnov Statistic A, skewness o, and
kurtosis «. For data from {z,}, we calculate three value.

The our normality fit N can be defined as follows:

N =10|A] +19| +|xl.
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In our study, we set the cut-off line to be 1. That is,
if N<1 then {2} is judged to be a good fit of normal
distribution.

if N>1 then {2} is not a good fit of normal distribution.

For {z,} which is possibly not a good fit for ARMA mod-
el, we still have to compute the best estimate of ARMA
model for them. It is a question of how we find a way to
discount non-ARMA aspect of the time series and find a
decent estimate of ARMA model for {z,}.

This can be addressed by MA-approximation method. It
will be described in full in the following sections. With
MA-approximation, we can finally get adequate ARMA
model for {z,}.

The discussion on setting up the proper control boundary,
UCL and LCL for {z,} will follow later. We briefly mention

here that it will involve the use of average deviation of {y;},
standard deviation and R-bar value of {z} along with the

linear component 5':"; =qa,+ byt

4. Detection of periodic components
4.1 Time-scale

Time-scale can be seen as a time span during which later
data can have high positive correlation with the earlier data
in the span. Beyond it, the correlation value is very low or
even negative. That is, beyond the time span, the autocorrela-
tion between the earlier data and the later data becomes close
to zero.

This kind of characterization may appear to present com-
plication in case of time-series data of period p with no ran-
dom components, because it is possible that data can have
high positive correlation with those far back in the time ser-
ies, if the distance between them is a multiple of p, their
correlation can reach 1. Besides, the series is made up of
data following deterministic pattern. However, it turns out

that p(%) =( even in such a case. So if we choose the

minimum time span during which autocorrelation between
data is above zero, the time-scale for a periodic time series
can be also defined using autocorrelation, even though the
time series is not random but observing simple deterministic
pattern. The only caveat is that the time span is not identical
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to the period, but the half of its length.

It is not enough to use ARIMA model for the time series
with long-term dependency and multiple time scale, includ-
ing nested multiple periods. Data we analyze frequently has
long-term dependency. While theoretically possible, estimat-
ing ARIMA model to account for long-distance dependency
is usually time-consuming and not accurate. As an ad hoc
method, one can produce shortened time-series made up of
data sampled with particular interval apart. However, this
tends to be arbitrary. In addition, there is a problem of multi-
ple time-scales. Some preliminary attempts have been made
by Box and othersl [4, 5] to tackle time series with periodic
components. However, they have not been fully explored.

Before moving on, we need to define what ‘multiple
time-scales’ means. In many real time-series data, we can
find multiple factors changing at a different rate. For exam-
ple, time-series data of temperature inside a large furnace
shows that there is a very short recurring pattern with period
of 20 minutes, another pattern with 24 hour period, another
with 1 year period (seasonal change). There are other inter-
mediate lengths of periods in-between ranging from a few
days to a month, Some of these periods are pronounced while
others are not. Each of such periods are overlaid one over
another to make a trend which accounts for large portion
of given time-series data. With this in place, the remaining
portion can be modeled after ARIMA or stationary ARMA -
model.

Multiple time-scale patterns do not always have to be

periodic.

1) Frequently, such patterns are not exact. They are subject
to minor changes. ;

2) More importantly, we do see multiple time-scales in time-
series data with no noticeable periodic components.

One may wonder how do you define time-scales in such
a case. Time-scale is related to how fast data value changes.
The pace of increase and decrease determines it. If the rate
of change is faster, data has shorter time scale, while slower
rate of change, longer time scale. However, in the model
discussed here, we assume that well-defined periods exist
for time-series data. More general treatment of time-scale
will be done in future research.

In our model, there is a particular relation among these
time-scales. We assume that time-scales obey certain restri-
ction. That is, the relative ratio between them should be gen-
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erated from a handful of simple ratios. They are 1 22,1 :3
or in some cases, 2 - 3. Based on these ratios, one can gen-
erate general ratio of 1:2™3" (m,n are non-negative in-
tegers and at least one of them is positive). Or in some cases,
2™ : 3" is possible for small m,n. So time scales can con-
stitute a hierarchy with certain kind of rations among them.
As we can see later, this has the effect of restricting the
possible choices of time scale factors.

One may ask why we should impose such an assumption.
It could be unnecessarily restrictive and may turn out to be
unrealistic.

However, this kind of ratio emerges naturally in many
real phenomena. Periods or frequencies are coupled in such
a ratio. It is called locking of periods (frequencies.) This
also provides us with the simplification of our task. It is
not that we arbitrarily chose this restriction. Nature imposes
such a simplified order in physical phenomena.

4.2 Extraction of Periods

In this section, we describe the method to extract periods
for periodic component y: After applying Fast Fourier
Transform to time series data {y,}, we want to select those
periods (or frequencies) whose amplitude is unusually high
compared with other periods in its neighborhood. The ampli-
tude should be salient in certain local segment of FFT chart.
It is similar to picking a salient local peak in a single variable
function. As mentioned previously, we assume salient peri-
ods make the nested period hierarchy (in terms of period
length) where each period is simple integer multiples (2, 3,
etc) or its inverses (1/2, 1/3) of one above or below in the
hierarchy. This means that salient periods would occur in
exponentially longer intervals as frequency becomes higher
(or period gets shorter). As a result, in the area of long peri-
ods (low frequencies), a peak is picked from relatively nar-
row neighborhood, while in the area of short periods (high
frequencies), it is picked from fairly wide neighborhood.

The extraction of periods proceeds as follows:

1) Apply Fast Fourier Transform on time series data and create
a list whose entry is a log value of each amplitude in FFT
result.

2) Subtract the below-trend amplitude from the original ampli-
tude after finding a trend curve and sometimes additionally
apply some threshold for further suppression of below-aver-
age amplitude.

3) Smoothen the result in (3) using Polynomial Weight Filter
(PWF).

42.1 FFT and log Transformation

Apply Fast Fourier Transform on times series {y} and
obtain:

F=(f,fpfr) where T is the length of {y,}.

Transform each value f;, of F using function ((z)=log,
(lz]+10)—1 and obtain L:

‘-'7lT)’ lzzg(fz) for i=1,, T

kY Wl bi “.“
tol AR ‘

I L |
] 100 200 300 a00 500 630

<Figure 3.1>

<Figure 3.2>
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The reason we use this transformation is that the value
of |f,| can wildly vary, that is, the difference between ampli-
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tudes |f,| and |f,| of two period(or frequency) can be better
measured in terms of ratio |f;|/|f;| than in terms of |f,|~|f}|.
In short. the difference can be exponential Hence, it is more
sensible to take log value of each amplitude for our pro-
cessing. The next factor we need to consider is that we are
only interested in finding periods(frequencies) of unusually
high amplitude. Those with lower amplitudes are not much
of our concern. While we need to preserve the difference
among the higher values, we do not need to highlight the
difference among many lower values, especially excessively
big negative log values for |f,| quite close to 0.

The function ¢((z) would serve this purpose. ((z) >0
and it will not exaggerate the difference among small val-
ues(especially those close to 0) of |z|. For x with large |x|,
the difference between log,glzl and ((z) converges asymp-
totically to 1, which means that for two large positive values
z and y, |logglzl—log,glyl| is almost equal to |¢(z)—¢(y)l,
effectively preserving the difference. In <Figure 3.1>, we
have a typical time series data with periodic component in
it. <Figure 3.2> shows FFT plot after applying ¢(z) on its
values.

422 Pruning Lower Part of Amplitude

Even after completing the transformation above, the graph
of L would show that the amplitude is taking the shape of
generally descending curve. Using a least square method, we
compute the best fit polynomial curve of degree k, £(i) =

k
Sia, i, for L=(l}, 1y, 1),
me=1

(i) can be seen as a general trend of L. Now subtract
2(i) from L, and ignores any negative values, filling them
with zero instead. Then we have:

D=(d, dy, -, dy) where d, =max(0, I, —£(1)).

This will better highlight salient local peaks, especially
the ones in the region of long periods(or low frequencies.)
The curve in <Figure 3.2> shows ¢(i). There are two high
peaks on the left-end side along with some low amplitude.
In this simple case, the curve does not show definite descend-
ing trend, but in general it is indeed the case (See the dis-
cussion on the final results of analysis later).

The plot of D is shown in <Figure 3.3>,

Now general trend curve of D would be almost horizontal.
Instead of using trend curve, we will compute the mean value
of D and subtract it and some more from D, creating :
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DW=(d,d, -, dy) where

d' =max(0,d,—(d +s(d))) and d is D’s mean and
s(d), D’s sample standard deviation. In <Figure 3.3>, the
horizontal line is the cut-off line d +s(d) and <Figure 3.4>
shows DU,

If needed, this operation can be repeated further. After
i increases, D will have smaller and smaller mean and
sample standard deviation, Only those with unusually high
amplitudes will remain having non-trivial amplitude values,
while the rest having 0.

4.2.3 Smoothing Using Polynomial Weight Filter (PWE)
Here, we will discuss how to apply smoothing filter on
D™ to locate salient peaks with unusually high amplitude.
Before moving further, we examine the property of two
well-known filters, moving average filter, exponential decay
filter, and later compare them with polynomial weight fil-
ter(PWF) which we will define.

(1) Moving Average Filter (MAF)

The following is the typical moving average filter. It has
fixed window width of 2/ +1. The window width can be
an even number, too. However, we chose an odd number
for simplicity. Every value within the window will be given
equal weight and f, will be the average of 21 +1 values
inside the window.

£, :Tiq(dn_ﬁ.-- +d,.), width 20+1.

definition of extended values on either boundary.

f—l+] :...:fo :fl and fT:fT+l ="'=fT+l'
{2) Exponential Decay Filter (EDF)

This is the filter with exponential decay. It can be defined
as follows :

fi=d, and p<1

(1-p"Y) (1-p"Y
fn:(l-p 1_f;n )dn+p 1__pn f""l’

In general,
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There is no fixed window width for this filter. All 12 val-
ues will contribute to the weighted average. However, values
beyond a certain distance [ from n are given so little weight
that their entire sum would be negligible. It can be called
an effective window of length I, and it depends on threshold
¢, the total sum of residual weights which can be safely
dismissed. It can be computed as follows:

S(m,n) =Y, 4. Then, §(0,00)=35(0,1—1)+5(, ),

4
$(1,0) = 1S(0,00) = 72—

1{e) is defined as the smallest [ for which

S(l,00) g . _ €
S0.0) —-———1_pl<€. That is, I{e) = Hogp(l—;;)} .

1(e) is the width of effective window with threshold e.

{3) Polynomial Weight Filter(PWF)

The above two weight filters are commonly used but as
we have shown, their (effective) window length is fixed. This
is not what we want. We want a filter whose effective win-
dow is progressively widening as we move up in the direc-
tion of shorter period (higher frequency). As we said before,
in our study, we assume salient periods make the nested peri-
od hierarchy (in terms of period length) where each period
is simple integer multiples (2, 3, etc) or its inverses (1/2,
1/3, etc) of one above or below in the hierarchy.

That is, the time series has a periodic component which
has periodic term for each period », in the following set 2.

P={ny; myy

and n,,,/n, =2"3% for i=1,-, p—1.

n,} where n; <n, < -~ <n,

In this case, the distribution of salient periods (or frequen-
cies) over period (frequency) axis would be exponentially
sparse as we move up from longer periods (low frequencies)
to shorter periods (higher frequencies).

To pick up salient periods in the range of shorter peri-
ods(higher frequencies,) we should have proportionally wider
window for smoothing operation to weed out insignificant
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peaks over the proportionally wider area, leaving only the
one with a salient amplitude peak.

For this purpose, we define Polynomial Weight Filter of
Order o as follows:

fnz (1_( n-l )a)dn+( ngl )afn—l’
= ;llg((n‘“(nwl)“)dn**(n“ D 1)
fi=d

In the case of a =1, f, is a simple average of d;, . d,,

L+ +d,)
n

In general,
;- 1d, + (2 = 1)d, + =+ (K — (k— 1)*)dy + -+ {n* — (n~1)*)d,

I nﬁ

Now, given a threshold ¢, let us calculate the width of
effective window as we did in Exponentially Decaying Filter.
Let I be the effective window width with threshold e. Then
the total weight allocated to dy, -, d,_; 1s:

Moving Average Filter
window width

dl . const

Exponential Decay Filter
effective window width

dy : const

Polynomial Weight Filter d,

effective window width dz ~ 7
— =~

<Figure 4>
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- (k-1)%) _ (n=1)°
o1 na na
@ _ 1
Since Ln——al—)—z(i—l)“<e, 1>(1—€%)n.
n n
1
Sol=T1(1—-€¢*)n]

Therefore, | ~n, i.e., [ is proportional to n.

If e=1/8 and a =3, we can see that [= [-;i] .

<Figure 4> shows the difference among three filters.
While the (effective) window width of both Moving Average
Filter d, and Exponential Decay Filter d, are constant in
length, the effective window width of Polynomial Weight
Filter is proportional to n.

5. MA-Approximation

As we have said previously, for time series {z,} which
may not be a perfect instance for ARMA model, we may
still have to compute the best estimate of ARMA model for
them. It is a question of how we find a way to discount
non-ARMA aspect of the time series and find a decent esti-
mate of ARMA model for {z}.

One of the most unsettling outcome we frequently encoun-
ter in estimating ARMA model for {z,} with some non-
ARMA aspect is that such an anomaly could push mean de-
rived from estimated ARMA model too far away from the
sample mean of {z,}. The sample mean of {z,} and the mean
from its estimate ARMA model doesn't have to agree, but
in some cases, the difference between the two become too
large. In extreme cases, the difference is more than sample
standard deviation of a time series. Especially, AR part of
the model is usually responsible for such an outcome. On
the one hand, there is a need to minimize residual errors
in estimating ARMA model. On the other hand, we need
to prevent the resulting model from being too skewed in one
direction, because of some anomaly present inside the time
series data. It would be best if we can identify the nature
of anomaly and have method to systematically factor it out,
as we did with linear and periodic components. However,
despite our best efforts, there would be always some anomaly
we could not identify. All we can do is to remove as many
non-ARMA components as possible, and produce the time

series data most amenable to ARMA model estimation,
To do this, we need to create a new criteria to measure
the fitness of given ARMA model for some time series {z,}.

5.1 Theoretical Framework
Recall our typical ARMA(p, q) model:

Z, =zt +¢pa:t_p+

a, =0~ —0a_,
That is,

(1= ¢,B— - — 6,8z, = (1-0,B— - —0,B%a,,
or ¢(B)z, =6(B)a,,

where

¢(B)=(1-¢,B— - —¢,B"),
§(B)=(1-6,B— - —0,B%a,

Here, q, is iid with o, ~ N0, ¢?) for all ¢.
Then, we have shown that z, can be transformed into a

following form:

oo
= ag taye  to tae e o = annat~n
n=

where «,’s are absolutely summable. In particular,
lime,, =0.

That is, z, can be expressed as infinite sum of MA terms.
All ARMA model can be converted into MA model of in-
finite degree where coefficients «,’s are absolutely sum-
mable.

Let 2 is the best fit for time series {z,} among all possi-
ble MA models of degree k (note : MA model of degree
k = ARMA(0, k)).

If {z,} is indeed an instance of ARMA model, as & grows,
2% converges to the best fit ARMA model. Even when {z,}
is not a perfect instance of ARMA model, ;(’“) could con-
verges to the best possible ARMA approximation of {z,}.

1t should be noted that residual error 72 of 2% is a monot-
onically decreasing sequence. As k grows, 72 gets smaller.

On the other hand, p;, the mean of estimated ¥, could

diverge from z, the sample mean of {z,}, as k grows, if
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{z,} is not a perfect instance of ARMA model. This does
not always happen, but it does happen once in a while.
For {z,}, initially the difference is zero, that is, p, —2z=0.
It generally increases but not monotonically, our study
shows.

Now we define the fitness measure ¥, for 2%

ry + 7| . .
V, = ~———— where s, is the sample standard devi-

z

ation of {z,} and serves as a normalizing factor. Now, we

can see that, on the right side of equation, r, is declining

but |u,—z| is rising overall, as k increases.

Now find 2z for successive values of k, and plot (&, 1)
graph.

(k, V,)-plot is shown in <Figure 5>, In the top graph, the
dark solid line is for ¥, and the {increasing) light solid line
is for |u,—z|/s,, while (decreasing) light solid line is for
7./ s,. As you can see, the value of V; generally drops and
slowly go back up. The pace of rise is frequently quite slow
compared with the initial drop. The little square in the chart
marks the minimum of V). Theoretically ¥, can take lower
value for some larger value of k beyond values plotted in
the graph, but practically speaking, it would be quite
unlikely.

In the second graph, one can notice that there is some
gap in the graph. For certain value of k, the estimation of
2% by standard time-series software package simply fails.

The graph of !pk—Z[/ s, shows a bump in the latter part of

T

T T

{k, V)-plot with extra anomalies
{(gap and bump)

ol W

- -

b S T S S S O S 1 A s e it = =]
1.2 2 4 5 8 7 B 8 1011 9213 ¥ 15 18 17 18 19 20 23 22 23 24 25 26 27 28 29 30 31 32 33 34 35 3} 37 38 3| 40

dark solid line : V,
light solid line(decreasing) : r, /s,
light solid line(increasing) }Nk —2[ /sz

<Figure 5>
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slope. It does not rise smoothly when the time series contains
some non-ARMA feature.

In addition to large gap between p, and z for higher k
value, we can add two more indicators to the criteria for
how far {z,} is from real ARMA model:

(1) |, — 2|/s, does not rise smoothly

(2) gaps are found in (k,V,) graph

Whether {z,} turns out to be close to real ARMA model
or not, best ARMA fit can be found. Let (k,,, V; ) is the

point marked by a red square. V, would be the minimum

value of V. Then, 2= s the best fit MAfor ARMA) mod-
el for {z,}.

6. Setting up Control Boundary

In preceding sections, we presented how to separate linear

{z,} and periodic components {y}} from time series {z,},

creating {z,} for which we can find the best fit 2o
MA model. Now we turn our attention to setting up the con-
trol boundary to detect out-of-control event. Setting up the
control boundary has been studied by many researchers [1,
3, 9] for non-periodic or iid cases.

6.1 Control boundary for {z,}

Since we decided to regard {z,} as ARMA model time

series, we compute z“k‘“‘“), the MA model which best fits

k, . .
{kain) as the baseline

of our control boundary. Now there are two ways to set upper
control limit(UCL) and lower control limit(LCL.)

{z,}. We get estimated mean 4, from 2

Using s, : We define UCL= m +3s,, LCL=p, —3s,
where s, is the sample standard deviation of {z,}. The justi-
fication of using s, in defining the two control limits is that

values of {z,} constitute a normal distribution since it is
assumed to be an ARMA model.

Using _}Z(q) : Apply the technique borrowed from Range
Chart (R-chart)) First, find the shortest time lag d,;,at which
autocorrelation goes ‘near zero’ in {z,} (criteria for ‘near

zero’ to be described in the next paragraph).
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For a group Z,(g) = {zm’zmﬁm, ""zm+(q~1)dmm}’
define

Imax(Z,(q)) —min(Z,(q))|

R 3 == 4
z(m Q) dR(q)

and

. 1 T"'(q—l)dmin

Rz(q) = ?m ngl Rz(m, q)

(Note : 2 < g < 10 and dz(g) can be found in <Table 1>)

{Table 1> dR-Table

(sampl’z . (:; i(s’z)r) Eol d® | k| dp®
2 1128 | 5 | 236 | 8 | 2847
3 1.693 6 2.534 9 2.970
4 2.059 7 2.704 10 3.078

The we define :

UCL =y, +3R,(g), LCL=p, —3R,(q).

In our study, we set ¢=6.

6.1.1 How to calculate d,;,

Plot the autocorrelation chart of {z,}. Define near-zero
value 4.

Find the shortest time lag d,;, for which |p; |<4. In
our study, we set §=0.1.

So any pair of values in {z,} which are d,;, apart, their
autocorrelation is quite low, close to zero. This means that
such pair of values are statistically ‘nearly independent.” So
practically speaking, this would satisfy the statistical con-
dition for applying Range Chart method. One can set 4 to
a different value. It all depends on the nature of application.

6.2 Control boundary for {z,}

As you remember, x, =zn+y:,+a;, where :?t is a linear
component, y,, a periodic component. We already know how
to set up the control boundary for {z,}.

To set up the control boundary for {z,}, we will add con-

tributions from x, and , to the control boundary for {z,}.

" The question is how to do it. For y;, we need to have some

way to measure its deviation away from its mean. Since g;An
is a periodic pattern, its values would not make up a normal
distribution. They may be distributed more evenly than val-
ues from normal distribution which tend concentrate more
around its mean. So the better measure of deviation could
be average deviation a;, which tend to discount the con-

tribution of extreme values compared with standard
deviation. It can be defined as follows :

a~=i§r—7[ where :=—1—§A the mean of y
4 Tt-—'lyt Y Y Tt=1yt; Y

For linear component z,, we won’t measure its deviation

in any way. Linear component would be directly incorporated
into control boundary of {xz,}. Let me explain this further.

If z,=a,+bt, UCL and LCL for {z,} are:

(1) Using s, -
UCL = ¢+ (g+Aa;) + (s, +Ds,)
= (ay+ §+ ) ot +Aa; +Ds,
(A and D are positive real numbers.)
LCL = a,+(y— Aa,) +( —Ds,)
= (ao—i-;-i-ykm)—i-bot—Aa&—&z

(2) Using R,(g)
UCL = &+ (5+ Aa,) + (, +DR(q))
= (ag+ g+, ) +bt+Aa; + DR,(9)
{A and D are positive real numbefs)
LCL = @+ (- Aa;) +(p, .~ DR, (q))
= (ay+ 5+, ) +bt—Aa; — DR, (q)

Most of the time, D=3. As for A, it may vary depending
on the situation. In our case, A=2. ; and g, are often
close to zero, and the above equations may turn out to be
no different from:

(1) UCL= ag +bgt+ Aa, +Ds,,

LCL = ay+ bt — Aa, — Ds,
(2) UCL = ay+bgt +Aa; + DR (q),
LCL = ay+bgt— Aa; ~ DR,(q)
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As you can see, UCL and LCL are no longer just horizon-
tal lines, but could be slanted linear trend. The control boun-
dary of {z,} are a pair of trend lines. <Figure 6> shows
the whole process.

Finally, there is some room for debate regarding the nature
of periodic components. In our study, we regard periodic
variation as something undesirable, hence we included its
average deviation o in setting up the control boundary of
(original) time series {z,}. However, in some cases, we
could regard periodic variation as acceptable change. If that
is the case, we only need to set up the control boundary
for {z,} to detect out-of-control event. As for linear change

i T 1 1

'mi UCL = ’ukmm +Dsl
| LCL =, —Ds,
. ucL

kA s

e

i
5

0 " A
0 100 00 E)

{2,} ARMA via MA-approximation

T — T T T

Bl

UCL = ;f/+,u.k ) “*'A%

Wi

st LOL = y+p, —Aag} ,

3;; periodic component

UCL = g+ g}-{-ukmm +bet+ Aa; + Ds,
LCL = ay+y+p, +bt—Aa,—Ds,

z, original time series

<{Figure &>
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trend, in our cases, it stems from measuring problem due
to erosion in heat-resistant bricks in which sensors are em-
bedded, not the actual change of temperature inside glass
furnace itself. Naturally, the linear change should be regarded
as acceptable, In different circumstances, linear trend change
itself could be a problem. Then we may have to find a way
to set the control boundary for linear trend.

7. Conclusion

In this research, we investigated the way to handle linear
and periodic components of a time series, which we often
encounter among time series obtained from the real
world(glass furnace.) First, we extract linear trend and peri-
odic components from original time series {x,}. Periods are
extracted using FFT and Polynomial Weight Filter(PWE.)
Then, after the two components are removed, we apply
MA-approximation method to find the best fit MA fit for
the resulting time series {z,}. Then we set up the new kind
of control boundary incorporating average deviation of peri-
odic component a;.

This study requires some further investigation using more
cases of time series. The proper boundary value for UCL
and LCL is one of the things which needs further empirical
investigation. At the same time, we may need to put some
efforts to simplify the whole process. Actual results of apply-
ing this method to real-world time-series data have been
compiled. However, the discussion on the results would take
up too much additional space, and are not included in this
paper. It will be described in some future publication on this
topic.

In addition to improvements that may be required for our
results, we should explore the way to expand the scope of
our investigation to multiple concurrent time seties data. In
the real-life situations, we get multiple time series data from
various sensors located in target facilities. They are usually
correlated in some way, and frequently have causative
relations. In order to properly diagnose the problem, focusing
on each time series separately could be a limited approach.

At the same time, the idea of time scale merits more re-
search, too. Each time series has its own unique dynamic,
represented in the presence of multiple time scale. Further
variables can be introduced for a factor corresponding to
each time scale. Such ideas are now merely at incubating
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stage. We would like to see this angle pursued in future
research.

All these further investigation would help better and reli-
able control of facilities to be managed.
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Glossary of Keywords

(a) Time-scale : specification of divisions (scale) of time or
rthythm.

(b) PL-ARMA : ARMA model with periodic and linear
components superimposed.

(c) MA-approximation : approximation of ARMA model
with MA-only model : analogous to Taylor expansion of
a function in its general approach.

(d) Nested periods : an ordered list of periods in which a
period is an integer multiple of another one right before
it.

(e) PWF : polynomial weight filter, which produces weight-
ed average of data, in which each weight is specified
in a polynomial form.

(f) Near-independent lag : time lag for which autocorrela-
tion is nearly zero. ‘Nearly zero’ is determined by a pre-
set threshold.



