STRONG CONVERGENCE OF A NEW ITERATIVE ALGORITHM FOR AVERAGED MAPPINGS IN HILBERT SPACES

  • Yao, Yonghong (Department of Mathematics, Tianjin Polytechnic University) ;
  • Zhou, Haiyun (Department of Mathematics, Shijiazhuang Mechanical Engineering College) ;
  • Chen, Rudong (Department of Mathematics, Tianjin Polytechnic University)
  • Received : 2009.09.10
  • Accepted : 2009.10.18
  • Published : 2010.05.30

Abstract

Let H be a real Hilbert space. Let T : $H\;{\rightarrow}\;H$ be an averaged mapping with $F(T)\;{\neq}\;{\emptyset}$. Let {$\alpha_n$} be a real numbers in (0, 1). For given $x_0\;{\in}\;H$, let the sequence {$x_n$} be generated iteratively by $x_{n+1}\;=\;(1\;-\;{\alpha}_n)Tx_n$, $n\;{\geq}\;0$. Assume that the following control conditions hold: (i) $lim_{n{\rightarrow}{\infty}}\;{\alpha}_n\;=\;0$; (ii) $\sum^{\infty}_{n=0}\;{\alpha}_n\;=\;{\infty}$. Then {$x_n$} converges strongly to a fixed point of T.

Keywords

References

  1. C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems 18(2002), 441-453. https://doi.org/10.1088/0266-5611/18/2/310
  2. C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems 20 (2004), 103-120. https://doi.org/10.1088/0266-5611/20/1/006
  3. C. I. Podilchuk and R. J. Mammone, Image recovery by convex projections using a least squares constraint, J. Opt. Soc. Am. 7 (1990), 517-521.
  4. H.K. Xu, Relaxed projections, averaged mappings and image recovery, the Proceedings of the International Conference on Fixed Point Theory and Its Applications, Yokohama Publishers 2004,275-292.
  5. Y. Yao and R. Chen, Convergence to common fixed points of averaged' mappings without commutativity assumption in Hilbert spaces, Nonlinear Anal. 67(2007), 1758-1763. https://doi.org/10.1016/j.na.2006.08.018
  6. H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 2(2002), 240-256.
  7. B. Halpern, Fixed points of nonexpansive maps, Bull. Am. Math. Soc. 73 (1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
  8. R. Wittmann, Appoximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992), 486-491. https://doi.org/10.1007/BF01190119
  9. H.K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Aust. Math. Soc. 65(2002), 109-113. https://doi.org/10.1017/S0004972700020116
  10. T. Suzuki, A sufficient and necessary condition for Halpern-type strong convergence to fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 135(2007), 99-106.
  11. N. Shahzad, Approximating fixed points of non-self nonexpansive mappings in Banach spaces, Nonlinear Anal. 61(2005), 1031-1039. https://doi.org/10.1016/j.na.2005.01.092
  12. H. Zegeye and N. Shahzad, Viscosity approximation methods for a common fixed point of finite family of nonexpansive mappings, Appl. Math. Comput. 191 (2007), 155-163. https://doi.org/10.1016/j.amc.2007.02.072
  13. M. Aslam Noor, General Variational Inequalities, Appl. Math. Letetrs 1 (1988), 119-121. https://doi.org/10.1016/0893-9659(88)90054-7
  14. M. Aslam Noor, Some developments in general variational inequalities, Appl. Math. Computations 152 (2004), 199-277. https://doi.org/10.1016/S0096-3003(03)00558-7
  15. M. Aslam Noor, K. Inayat Noor and Th. M. Rassais, Some aspects of variational inequalities, J. Comput. Appl. Math. 47 (1993), 285-312. https://doi.org/10.1016/0377-0427(93)90058-J
  16. M. Aslam Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000), 217-229. https://doi.org/10.1006/jmaa.2000.7042
  17. Y. Yao, M. Aslam Noor, Convergence of three-step iterations for asymptotically nonexpansive mappings, Applied Mathematics and Computation 187 (2007), 883-892. https://doi.org/10.1016/j.amc.2006.09.008
  18. M. Aslam. Noor, Z. Huang, Three-step methods for nonexpansive mappings and variational inequalities, Applied Mathematics and Computation 187 (2007), 680-685. https://doi.org/10.1016/j.amc.2006.08.088
  19. Z. Huang, M. Aslam Noor, Some new unified iteration schemes with errors for nonexpansive mappings and variational inequalities, Applied Mathematics and Computation 194 (2007), 135-142. https://doi.org/10.1016/j.amc.2007.04.056
  20. M. Aslam Noor, Z. Huang, Some resolvent iterative methods for variational inclusions and nonexpansive mappings, Applied Mathematics and Computation 194 (2007), 267-275. https://doi.org/10.1016/j.amc.2007.04.037
  21. X. Qin, M. Aslam Noor, General WienerCHopf equation technique for nonexpansive mappings and general variational inequalities in Hilbert spaces, Applied Mathematics and Computation 201 (2008), 716-722. https://doi.org/10.1016/j.amc.2008.01.007
  22. M. Aslam Noor, General variational inequalities and nonexpansive mappings, Journal of Mathematical Analysis and Applications 331 (2007), 810-822. https://doi.org/10.1016/j.jmaa.2006.09.039
  23. Y. Yao, M. Aslam Noor, On viscosity iterative methods for variational inequalities, Journal of Mathematical Analysis and Applications 325 (2007), 776-787. https://doi.org/10.1016/j.jmaa.2006.01.091
  24. M. Aslam Noor, Y. Yao, Three-step iterations for variational inequalities and nonexpansive mappings, Applied Mathematics and Computation 190 (2007), 1312-1321. https://doi.org/10.1016/j.amc.2007.02.013
  25. Y. Yao, J.C. Yao, H. Zhou, Approximation methods for common fixed points of infinite countable family of nonexpansive mappings, Computers and Mathematics with Applications 53 (2007), 1380-1389. https://doi.org/10.1016/j.camwa.2006.10.021
  26. Y. Yao, Y.C. Liou, R. Chen, A general iterative method for an infinite family of nonexpansive mappings, Nonlinear Analysis. 69 (2008), 1644-1654. https://doi.org/10.1016/j.na.2007.07.013